""" This is an experiment to: * entertain a thought to try and abide by HF's transformers API (to benefit from caching better) * conform to a single embedding (instead of a bunch of them) by folding/unfolding inputs * stop trying to make a mixed AR+NAR model work since it seems lobotomized if I keep trying to enforce both recurrent and parallel inferencing (despite a penalty cost) + I will not cave and go with codebook patterns, not yet. """ from ..config import cfg from ..data import fold_inputs, unfold_outputs import torch from torch.nn.utils.rnn import pad_sequence from torch import Tensor from torch.nn import CrossEntropyLoss from torch.utils.checkpoint import checkpoint import random import math from einops import rearrange from tqdm import trange AVAILABLE_ARCHES = [] try: from transformers import LlamaForCausalLM, LlamaConfig AVAILABLE_ARCHES.append("llama") except Exception as e: print("Error importing `llama` arch:", e) pass try: from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm def MambaMixelModel_forward(self, input_ids, inference_params=None, **mixer_kwargs): hidden_states = self.embedding(input_ids) residual = None for layer in self.layers: if self.gradient_checkpointing and hidden_states.requires_grad: hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, use_reentrant=False ) else: hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params ) if not self.fused_add_norm: residual = (hidden_states + residual) if residual is not None else hidden_states hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) else: # Set prenorm=False here since we don't need the residual hidden_states = MambaLayerNormFn( hidden_states, self.norm_f.weight, self.norm_f.bias, eps=self.norm_f.eps, residual=residual, prenorm=False, residual_in_fp32=self.residual_in_fp32, is_rms_norm=isinstance(self.norm_f, MambaRMSNorm) ) return hidden_states MambaMixelModel.forward = MambaMixelModel_forward AVAILABLE_ARCHES.append("mamba") except Exception as e: print("Error importing `mamba` arch:", e) pass SELECTED_ARCH = cfg.model.arch_type if SELECTED_ARCH not in AVAILABLE_ARCHES: raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available") if SELECTED_ARCH == "mamba": LlmArchClass = MambaLMHeadModel elif SELECTED_ARCH == "llama": LlmArchClass = LlamaForCausalLM else: raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available") class Model(LlmArchClass): def __init__( self, d_model=1024, n_layers=12, n_heads=16, p_dropout=0.1, config = None, ): self.hyper_config = config hf_attention = config.attention if config is not None else None gradient_checkpointing = config.gradient_checkpointing if config is not None else True if SELECTED_ARCH == "llama": super().__init__(config=LlamaConfig( vocab_size=256 + (1024 * cfg.model.prom_levels) + (1024 * cfg.model.prom_levels) + 1, hidden_size=d_model, max_position_embeddings=cfg.dataset.frames_per_second * cfg.model.prom_levels * 60, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout, num_key_value_heads=n_heads, sliding_window=cfg.dataset.frames_per_second * cfg.model.prom_levels * 12, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, attn_implementation=hf_attention, )) if gradient_checkpointing: self.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif SELECTED_ARCH == "mamba": super().__init__(config=MambaConfig( vocab_size=256 + (1024 * cfg.model.prom_levels) + (1024 * cfg.model.prom_levels) + 1, d_model=d_model, n_layer=n_layers*2, #ssm_cfg={"layer": "Mamba2"}, # will ALWAYS nan )) self.backbone.gradient_checkpointing = gradient_checkpointing def forward( self, *args, **kwargs, ): output = super().forward(*args, **kwargs) if SELECTED_ARCH == "llama": if output.loss is not None: self.loss = dict( nll = output.loss, ) elif SELECTED_ARCH == "mamba": if "labels" in kwargs: logits = output.logits labels = kwargs.pop("labels") # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, shift_logits.size(-1)) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) self.loss = dict( nll = loss, ) return output def example_usage(): cfg.trainer.backend = "local" cfg.hyperparameters.gradient_accumulation_steps = 1 if cfg.audio_backend == "dac": cfg.sample_rate = 44_000 from functools import partial from einops import repeat from tqdm import tqdm from ..emb.qnt import decode_to_file, unload_model from ..engines import Engine from ..utils import wrapper as ml import numpy as np import re device = "cuda" def tokenize(content): return torch.tensor( cfg.tokenizer.encode(content) ) def _load_quants(path) -> Tensor: qnt = np.load(path, allow_pickle=True)[()] return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.prom_levels, :].t().to(torch.int16) qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}") text_list = [ tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device), #tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device), ] proms_list = [ qnt[:cfg.dataset.frames_per_second, :].to(device), #qnt[:cfg.dataset.frames_per_second, :].to(device), ] resps_list = [ qnt[:, :].to(device), #qnt[cfg.dataset.frames_per_second:, :].to(device), ] text_list = text_list[:1] proms_list = proms_list[:1] resps_list = resps_list[:1] input_ids, attention_mask = fold_inputs(text_list, proms_list, resps_list) target_ids, target_attention_mask = fold_inputs(text_list, proms_list, resps_list, ignore_index=-100) prefix_input_ids, prefix_attention_mask = fold_inputs(text_list, proms_list) kwargs = {} model = Model(**kwargs).to(device) steps = 50 optimizer = cfg.hyperparameters.optimizer.lower() if cfg.cfg_path is not None else "prodigy" scheduler = cfg.hyperparameters.scheduler.lower() if cfg.cfg_path is not None else "" learning_rate = cfg.hyperparameters.learning_rate if cfg.cfg_path is not None else None if cfg.optimizations.dadaptation: # do not combine the two if scheduler == "schedulefree": scheduler = "" learning_rate = 1.0 if optimizer == "prodigy": if learning_rate is None: learning_rate = 1.0 optimizer = ml.Prodigy elif optimizer == "adagrad": if learning_rate is None: learning_rate = 1.0e-2 optimizer = ml.Adagrad elif optimizer == "adamw": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.AdamW elif optimizer == "sdg": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.SGD else: raise ValueError(f"Unrecognized optimizer: {optimizer}") print("Optimizer:", optimizer, "\tLearning rate:", learning_rate) optimizer = optimizer(model.parameters(), lr=learning_rate) if scheduler == "schedulefree": if isinstance(optimizer, ml.AdamW): scheduler = ml.schedulefree.AdamWScheduleFree elif isinstance(optimizer, ml.SGD): scheduler = ml.schedulefree.SGDScheduleFree else: scheduler = None if scheduler is not None: print("Scheduler:", scheduler) optimizer = scheduler( model.parameters(), lr = learning_rate ) if cfg.optimizations.replace and cfg.optimizations.linear: model = ml.replace_linear( model ) if cfg.optimizations.replace and cfg.optimizations.embedding: model = ml.replace_embedding( model ) engine = Engine(model=model, optimizer=optimizer) torch.save( { 'module': model.state_dict() }, f"./data/{SELECTED_ARCH}.pth" ) print(f"{LlmArchClass} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") @torch.inference_mode() def sample( name, steps=cfg.model.prom_levels*cfg.dataset.frames_per_second*60 ): engine.eval() if SELECTED_ARCH == "mamba": output = model.generate(input_ids=prefix_input_ids, cg=True, max_length=steps, eos_token_id=3) else: output = model.generate(input_ids=prefix_input_ids, attention_mask=prefix_attention_mask, max_length=steps, eos_token_id=3, do_sample=False) unfolded = unfold_outputs( output ) for i, batch in enumerate(unfolded["resp_list"]): _ = decode_to_file(batch.to(device=device), f"data/{SELECTED_ARCH}.{cfg.audio_backend}.{i}.{name}.wav", device=device) unload_model() def train(): engine.train() t = trange(steps) for i in t: stats = {"step": i} if SELECTED_ARCH == "mamba": stats |= engine.traverse(input_ids=input_ids, labels=target_ids) else: stats |= engine.traverse(input_ids=input_ids, labels=target_ids, attention_mask=attention_mask) stats |= {"grad_norm": engine.get_global_grad_norm()} tqdm.write(f"{stats}") torch.save( { 'module': model.state_dict() }, f"./data/{SELECTED_ARCH}.pth" ) #sample("init", 5) train() sample("final") if __name__ == "__main__": example_usage()