""" # an AR + NAR model that handles: * inferencing the primary RVQ level in an autoregressive manner (AR) * inferencing the remaining RVQ levels in parallel (NAR) This model can fully handle being trained as a unified model (AR + NAR) or separate models (AR | NAR). It's recommended to train as a unified model, then "distill" knowledge of each tasks separately, just in case. """ from .base import Base, list_to_tensor, Categorical from ..config import cfg import torch from torch.nn.utils.rnn import pad_sequence import random import math import time from einops import rearrange from torch import Tensor from tqdm import trange, tqdm import logging _logger = logging.getLogger(__name__) from ..emb.qnt import trim, encode_as_embedding, get_silence from ..utils import get_devices, setup_logging, timer, clamp, convert_kwargs from .lora import enable_lora from ..samplers import cfg_logits text_task = [ "stt", "phn", "un-phn" ] class AR_NAR(Base): # yikes def forward_super(self, *args, **kwargs): return super().forward(*args, **kwargs) # parse inputs for training # a lot of this could be delegated back to the dataloader, but it's just easier to keep the task of the dataloader to provide sufficient data, and the model to process the data for training def forward_train( self, task_list: list[Tensor] | None = None, text_list: list[Tensor] | None = None, proms_list: list[Tensor] | None = None, resps_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, raw_text_list: list[Tensor] | None = None, ): # deduce batch_size if text_list: device = text_list[0].device batch_size = len(text_list) elif raw_text_list: device = raw_text_list[0].device batch_size = len(raw_text_list) elif proms_list: device = proms_list[0].device batch_size = len(proms_list) elif resps_list: device = resps_list[0].device batch_size = len(resps_list) # specifies how to sample probabilities of which RVQ levels to train against rvq_levels_p = self.config.experimental.rvq_levels_p if self.config is not None else "equal" # determines which RVQ level to target per batch quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ] # rate to perform token dropout errors token_dropout_error = self.config.experimental.token_dropout_error # RVQ levels to apply token dropout on token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels # RVQ levels to apply masking training on masking_train_rvq_levels = self.config.experimental.masking_train_rvq_levels # CFG cfg_text_dropout_p = self.config.experimental.cfg_text_dropout_p if self.config is not None else 0.0 cfg_cond_dropout_p = self.config.experimental.cfg_cond_dropout_p if self.config is not None else 0.0 cfg_prom_dropout_p = self.config.experimental.cfg_prom_dropout_p if self.config is not None else 0.0 use_raw_text_p = self.config.experimental.use_raw_text_p if self.config is not None else 0.0 # rate to train RVQ level AR-ly or NAR-ly masking_train_p = self.config.experimental.masking_train_p if self.config is not None else 0.5 masking_ratio = self.config.experimental.masking_ratio if self.config is not None else "random" # force set mask training if "len" not in self.capabilities: masking_train_p = 0.0 elif "ar" not in self.capabilities: masking_train_p = 1.0 # implicitly set it to all levels if not token_dropout_rvq_levels: token_dropout_rvq_levels = [0, self.resp_levels - 1] if not token_dropout_rvq_levels: token_dropout_rvq_levels = [0, 0] # allow passing a specific distribution of RVQ levels rvq_levels_p = rvq_levels_p if isinstance(rvq_levels_p, list) else [] if not rvq_levels_p: lo, hi = quant_level_range[0], quant_level_range[1] + 1 # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR) if rvq_levels_p == "equal": rvq_levels_p = [ i for i in range( lo, hi ) ] else: # yuck rvq_levels_p = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], []) # input RVQ levels quant_levels = [ random.choice( rvq_levels_p ) for i in range(batch_size) ] # timestep levels (for TTS NAR) timesteps = [ None for _ in range(batch_size) ] for i, task in enumerate( task_list ): lo, hi = masking_train_rvq_levels[0], masking_train_rvq_levels[1] if task in text_task: quant_levels[i] = 0 # self.n_resp_levels - 1 elif lo <= quant_levels[i] and quant_levels[i] <= hi and random.random() < masking_train_p: # to-do: prioritize lower timesteps over later timesteps # ...except that the masking rate is still tied to the cosine scheduling, which does this already #r = random.random() #p = math.acos(r) / (math.pi * 0.5) #timesteps[i] = 1.0 - clamp(p, 0.0, 1.0) timesteps[i] = random.random() # instead make it between [0.2, 0.8] if masking_ratio == "rand": timesteps[i] = (timesteps[i] * 0.6) + 0.2 # trim resps to only contain all levels below the target level resps_list = [r if t in text_task else r[..., :l+1] for r, l, t in zip(resps_list, quant_levels, task_list)] # tensor to cat for RVQ level 0 text_stop_sequence = torch.tensor([2], device=device, dtype=torch.int16) text_start_stop_sequence = torch.tensor([1, 2], device=device, dtype=torch.int16) audio_stop_sequence = torch.tensor([[self.stop_token]], device=device, dtype=torch.int16) # final validations and stuff for i, quant_level, resps, proms, task in zip(range(batch_size), quant_levels, resps_list, proms_list, task_list): # cap quant_level if it exceeds its corresponding resp/prom # this was needed for when my DAC-encoded audio was erroneously trimmed to 8 RVQ levels instead of 9 if quant_level >= resps.shape[-1]: quant_levels[i] = resps.shape[-1] - 1 # proms could be a Tensor, list[Tensor], or None if isinstance( proms, torch.Tensor ): if quant_level >= proms.shape[-1]: quant_levels[i] = proms.shape[-1] - 1 elif isinstance( proms, list ): for j, prom in enumerate( proms ): if not isinstance( prom, torch.Tensor ): continue if quant_level >= prom.shape[-1]: quant_levels[i] = prom.shape[-1] - 1 # apply token dropout error compensation if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]): steps = resps.shape[0] for l in range( quant_level ): for t in range( steps ): token = resps[t, l].item() if random.random() < token_dropout_error: offset = 1 * ( 1 if random.random() < 0.5 else -1 ) resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1 # only apply stop token for RVQ level 0 if quant_level <= 0 and timesteps[i] is None: # append stop tokens for AR if task not in text_task: resps_list[i] = torch.cat([ resps, audio_stop_sequence ]) if task == "len": quant_levels[i] = 0 # apply CFG (should probably only apply to NAR quant level 0) if task not in text_task + ["len"]: drop_text = False drop_audio = False swap_text = False if random.random() < cfg_prom_dropout_p: drop_audio = True if random.random() < cfg_cond_dropout_p: drop_audio = True drop_text = True if random.random() < use_raw_text_p and raw_text_list[i] is not None: swap_text = True if drop_text: text_list[i] = text_start_stop_sequence if drop_audio: proms_list[i] = None if swap_text and not drop_text: text_list[i] = None inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, task_list=task_list, raw_text_list=raw_text_list, time_list=timesteps, quant_levels=quant_levels, ) return super().forward( inputs=inputs, quant_levels=quant_levels, ) def forward_nar_masked( self, task_list: list[Tensor] | None = None, text_list: list[Tensor] | None = None, proms_list: list[Tensor] | None = None, resps_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, raw_text_list: list[Tensor] | None = None, disable_tqdm=False, use_lora=None, **sampling_kwargs, ): device = text_list[0].device batch_size = len(text_list) level = 0 if cfg.lora is not None: enable_lora( self, cfg.lora.active_level( level ) if use_lora is None else use_lora ) """ def log(t, eps=1e-10): return torch.log(t + eps) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature=1.0, dim=-1): return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim) """ # convert (N)AR specific args sampling_kwargs = convert_kwargs( sampling_kwargs, "ar_" ) min_length = sampling_kwargs.pop("min_duration", 1) max_length = sampling_kwargs.pop("max_duration", 500) max_steps = sampling_kwargs.get("max_steps", 25) refine_on_stop = sampling_kwargs.get("refine_on_stop", False) entropix_sampling = sampling_kwargs.get("entropix_sampling", False) annealed_sampling = sampling_kwargs.get("annealed_sampling", True) # greedy sampling is very, very much preferred, but using greedy logit scores later helps enough temperature = sampling_kwargs.pop("temperature", 0.0) minimum_cfg_strength = sampling_kwargs.get("minimum_cfg_strength", 2.5) # this really helps keep audio coherent so far cfg_strength = sampling_kwargs.get("cfg_strength", minimum_cfg_strength) cfg_rescale = sampling_kwargs.pop("cfg_rescale", 0.75) start_noise = sampling_kwargs.get("denoise_start", 0.0) end_noise = sampling_kwargs.get("denoise_end", 1.0) remasking = sampling_kwargs.get("remasking", True) max_steps = math.floor(max_steps * (end_noise - start_noise)) # to specify the initial mask used vc_list = sampling_kwargs.pop("vc_list", None) vc_threshold = sampling_kwargs.pop("vc_threshold", 0.25) vc_mask_p = sampling_kwargs.pop("vc_mask_p", 0.25) if vc_list is not None: vc_list = [ x if x.dim() == 1 else x[:, 0] for x in vc_list ] len_list = [ x.shape[0] for x in vc_list ] len_list = [ clamp(l, min_length, max_length) for l in len_list ] # force set CFG because too low / no CFG causes issues original_cfg_strength = cfg_strength cfg_strength = max( cfg_strength, minimum_cfg_strength ) prefix_context = sampling_kwargs.get("prefix_context", None) # we can get away with just providing a list of resps to prefix later, and it will magically get removed anyways when masking and scoring if prefix_context is not None: text_list = [ torch.concat([prefix[:-1], text[1:]]) for prefix, text in zip( prefix_context[0], text_list ) ] prefix_resps_list = [ resps if resps.dim() == 1 else resps[:, 0] for resps in prefix_context[1] ] # if we're denoising from an existing sequence if start_noise > 0.0 and resps_list is not None: # flatten if needed resps_list = [ resps if resps.dim() == 1 else resps[:, 0] for resps in resps_list ] # gen masking ratio noise_p = math.cos( start_noise * math.pi * 0.5 ) # generate scoring mask (because the above mask will get masked off per the scores, so we do not need to mask beforehand) scores = [ torch.tensor( [ 1.0 if random.random() < noise_p else 0.0 for _ in range( seq_len ) ], dtype=torch.float32, device=device ) for seq_len in len_list ] else: # fill with masked tokens (even though they get masked anyways) resps_list = [ torch.ones((seq_len,), dtype=torch.int16, device=device) * self.stop_token for seq_len in len_list ] # fill scores scores = [ torch.ones((seq_len,), dtype=torch.float32, device=device) for seq_len in len_list ] quant_levels = [ level for _ in range(batch_size) ] null_text = [ torch.tensor([1, 2], device=device, dtype=torch.int16) for _ in range(batch_size) ] null_prom = [ None for _ in range(batch_size) ] iterator = tqdm(torch.linspace(start_noise, end_noise, max_steps), desc="NAR Masked", disable=disable_tqdm) for timestep in iterator: # update previous list of tokens prev_list = resps_list # ramp down over time annealing = 1.0 - timestep # get noise level, per cosine scheduling noise_p = math.cos( timestep * math.pi * 0.5 ) # proportion of tokens to remask remask_p = 1.0 / (max_steps * 2) if remasking else 0 # pick the worst scoring tokens to mask off masked_indices = [ score.topk( clamp( int( noise_p * seq_len + remask_p * seq_len ), 1, seq_len), dim=-1 ).indices for score, seq_len in zip(scores, len_list) ] # normal masking if vc_list is None or timestep >= vc_threshold: # mask off inputs resps_list = [ resp.scatter(0, indices, self.stop_token) for resp, indices in zip( resps_list, masked_indices ) ] # boolean mask is_masked = [ resps == self.stop_token for resps in resps_list ] else: # mask off a random portion of the target rand_mask_list = [ torch.rand(mask.shape).to(device=device) < vc_mask_p for mask in vc_list ] half_mask_list = [ torch.where( rand_mask, self.stop_token, mask.clone() ) for mask, rand_mask in zip( vc_list, rand_mask_list ) ] # always set the last end as masked off because it causes issues for i, mask in enumerate(half_mask_list): half_mask_list[i][-75:] = self.stop_token # # mask off inputs per mask resps_list = [ resp.scatter(0, indices, mask) for resp, indices, mask in zip( resps_list, masked_indices, half_mask_list ) ] # boolean mask is_masked = [ resps == mask for resps, mask in zip( resps_list, half_mask_list ) ] # timestep inputs time_list = [ timestep for _ in range(batch_size) ] sampling_temperature = temperature * annealing if annealed_sampling else temperature sampling_cfg = cfg_strength * timestep if annealed_sampling else cfg_strength # avoid useless CFG sampling """ if sampling_cfg < minimum_cfg_strength * 0.5: sampling_cfg = 0 """ if prefix_context is not None: input_resps_list = [ torch.concat( [ prefix, resps ] ) for prefix, resps in zip( prefix_resps_list, resps_list ) ] # originally requested no CFG, safe to ignore if we have a prefix if original_cfg_strength < minimum_cfg_strength: sampling_cfg = original_cfg_strength * timestep if annealed_sampling else original_cfg_strength else: input_resps_list = resps_list # setup inputs inputs = super().inputs( text_list=text_list, proms_list=proms_list, resps_list=input_resps_list, lang_list=lang_list, tone_list=tone_list, time_list=time_list, quant_levels=quant_levels, ) output = super().forward( inputs=inputs, quant_levels=quant_levels, ) logits = output.logits if cfg_strength > 0: null_inputs = super().inputs( text_list=null_text, proms_list=null_prom, resps_list=input_resps_list, lang_list=lang_list, tone_list=tone_list, time_list=time_list, quant_levels=quant_levels, ) null_output = super().forward( inputs=null_inputs, quant_levels=quant_levels, ) logits = cfg_logits( logits=output.logits, null=null_output.logits, strength=cfg_strength, rescale=cfg_rescale, lens=[ l for l in len_list ] ) # sample with sampler settings filtered_sampled = super().sample( logits=logits, prev_list=prev_list, quant_levels=quant_levels, temperature=sampling_temperature, **sampling_kwargs, ) # retrieves unfiltered logits unfiltered_sampled = super().sample( logits=logits, prev_list=prev_list, quant_levels=quant_levels, temperature=0.0, **sampling_kwargs, ) # get sampled tokens sampled_ids = filtered_sampled.ids # keep unmasked tokens resps_list = [ torch.where( masked, input_ids, resps ).to(torch.int16) for masked, input_ids, resps in zip( is_masked, sampled_ids, resps_list ) ] # get probability scores scores = [ # conjugate to have worse scoring tokens picked for topk 1.0 - # only keep scores of tokens we are predicting (and ignore the tokens previously finalized) torch.where( masked, torch.tensor([score for index, score in enumerate(scores)], device=device), torch.ones(masked.shape, device=device) ) # use unmodified logit scores for this, as it offers better stability for scores, masked in zip( unfiltered_sampled.scores, is_masked ) ] return resps_list def forward_nar( self, task_list: list[Tensor] | None = None, text_list: list[Tensor] | None = None, proms_list: list[Tensor] | None = None, resps_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, raw_text_list: list[Tensor] | None = None, disable_tqdm=False, use_lora=None, **sampling_kwargs, ): # inference NAR level 0 if len_list is not None: resps_list = self.forward_nar_masked( text_list=text_list, proms_list=proms_list, resps_list=resps_list, task_list=task_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, **sampling_kwargs, ) # deduce batch_size if text_list: device = text_list[0].device batch_size = len(text_list) elif raw_text_list: device = raw_text_list[0].device batch_size = len(raw_text_list) elif proms_list: device = proms_list[0].device batch_size = len(proms_list) elif resps_list: device = resps_list[0].device batch_size = len(resps_list) # convert NAR specific args sampling_kwargs = convert_kwargs( sampling_kwargs, "nar_" ) max_levels = sampling_kwargs.get("max_levels", 0) cfg_strength = sampling_kwargs.get("cfg_strength", 0.0) cfg_rescale = sampling_kwargs.pop("cfg_rescale", 0.7) if max_levels == 0: max_levels = self.n_max_levels - 1 # expand if given a raw 1D tensor for i, resp in enumerate(resps_list): if resp.dim() == 1: resps_list[i] = resp.unsqueeze(-1) prev_list = resps_list null_text = [ torch.tensor([1, 2], device=device, dtype=torch.int16) for _ in range(batch_size) ] null_prom = [ None for _ in range(batch_size) ] iterator = trange( max_levels, desc="NAR", disable=disable_tqdm ) for n in iterator: level = prev_list[0].shape[-1] if level >= max_levels + 1: iterator.close() break if cfg.lora is not None: enable_lora( self, cfg.lora.active_level( level ) if use_lora is None else use_lora ) quant_levels = [ level for _ in range(batch_size) ] inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=prev_list, lang_list=lang_list, tone_list=tone_list, quant_levels=quant_levels, ) output = super().forward( inputs=inputs, quant_levels=quant_levels, ) logits, state = output.logits, output.state if cfg_strength > 0: null_inputs = super().inputs( text_list=null_text, proms_list=null_prom, resps_list=prev_list, lang_list=lang_list, tone_list=tone_list, quant_levels=quant_levels, ) null_output = super().forward( inputs=null_inputs, quant_levels=quant_levels, ) logits = cfg_logits( logits=output.logits, null=null_output.logits, strength=cfg_strength, rescale=cfg_rescale, lens=[ resp.shape[0] for resp in resps_list ] ) sampled = super().sample( logits=logits, prev_list=prev_list, quant_levels=quant_levels, **(sampling_kwargs), ) resps_list = sampled.ids prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device=device)], dim=-1) for rs, r in zip(prev_list, resps_list) ] return prev_list def forward_ar( self, task_list: list[Tensor], text_list: list[Tensor] | None = None, raw_text_list: list[Tensor] | None = None, proms_list: list[Tensor] | None = None, resps_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, disable_tqdm=False, use_lora=None, **sampling_kwargs, ): # deduce batch_size if text_list: device = text_list[0].device batch_size = len(text_list) elif raw_text_list: device = raw_text_list[0].device batch_size = len(raw_text_list) elif proms_list: device = proms_list[0].device batch_size = len(proms_list) elif resps_list: device = resps_list[0].device batch_size = len(resps_list) if cfg.lora is not None: enable_lora( self, cfg.lora.active_level( 0 ) if use_lora is None else use_lora ) # convert AR specific args sampling_kwargs = convert_kwargs( sampling_kwargs, "ar_" ) temperature = sampling_kwargs.get("temperature", 1.0) cfg_strength = sampling_kwargs.get("cfg_strength", 0.0) cfg_rescale = sampling_kwargs.pop("cfg_rescale", 0.7) min_temperature = sampling_kwargs.get("min_temperature", -1.0) max_duration = sampling_kwargs.get("max_duration", 500) beam_width = sampling_kwargs.get("beam_width", 0) entropix_sampling = sampling_kwargs.get("entropix_sampling", False) refine_on_stop = sampling_kwargs.get("refine_on_stop", False) input_prompt_prefix = sampling_kwargs.get("input_prompt_prefix", False) layer_skip = sampling_kwargs.get("layer_skip", False) prefix_silence = sampling_kwargs.get("prefix_silence", 0.0) mirostat_tau = sampling_kwargs.get("mirostat_tau", 0.0) mirostat_eta = sampling_kwargs.get("mirostat_eta", 0.0) # inference len if task_list is not None and task_list[0] == "len": sequence_list = [ torch.tensor([0], device=device,dtype=torch.int16) for _ in range(batch_size) ] stopped = torch.zeros(batch_size, device=device).bool() stop_token = 10 task_list = [ "len" for _ in range(batch_size) ] quant_levels = [ 0 for _ in range( max( batch_size, beam_width ) ) ] iterator = trange(10, desc="AR", disable=disable_tqdm) for n in iterator: len_list = sequence_list inputs = self.inputs( task_list=task_list, text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, raw_text_list=raw_text_list, quant_levels=quant_levels, ) output = super().forward( inputs=inputs, quant_levels=quant_levels, ) logits = output.logits r = [ logit[-1:].argmax(dim=1) for logit in logits ] # sanitize for i, token in enumerate(r): if token > stop_token: r[i][0] = stop_token # append tokens for i, ri in enumerate(r): if stop_token in ri: stopped[i] = True sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)]) # stop token found stopped |= r == stop_token if stopped.all().item(): iterator.close() break # convert tokens into int return [ int("".join([ str(token.item()) for token in r if token != stop_token ])) for r in sequence_list ] start_slice = [ 0 for _ in range(batch_size) ] sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in range(batch_size) ] stopped = torch.zeros(batch_size, device=device).bool() audio_stop_token = self.stop_token text_stop_token = 2 state = None mirostat = [ {"n": 1024, "tau": mirostat_tau, "eta": mirostat_eta, "max_surprise": mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0} ] * batch_size if mirostat_tau > 0.0 else None scores = [ 1.0 ] * beam_width metrics = [] """ sampling_layer_skip_variables = {} if sampling_layer_skip else None if sampling_layer_skip: if sampling_layer_skip_entropy_threshold >= 0: sampling_layer_skip_variables["entropy_threshold"] = sampling_layer_skip_entropy_threshold if sampling_layer_skip_varentropy_threshold >= 0: sampling_layer_skip_variables["varentropy_threshold"] = sampling_layer_skip_varentropy_threshold if sampling_layer_skip_exit_layer >= 0: sampling_layer_skip_variables["max_layer"] = sampling_layer_skip_exit_layer """ for i, sequence in enumerate( sequence_list ): # add to text for STT if task_list[i] in text_task: start_slice[i] = 1 sequence_list[i] = torch.cat([sequence_list[i], torch.tensor([1], dtype=torch.int16, device=device)]) # treat input prompt as initial resp (by prefixing with the prompt instead) elif input_prompt_prefix: start_slice[i] = proms_list[i].shape[0] sequence_list[i], proms_list[i] = proms_list[i][:, 0], sequence_list[i] elif prefix_silence > 0: sequence_list[i] = get_silence(prefix_silence, device=sequence_list[i].device) sequence_list[i] = sequence_list[i][:, 0] # start_slice[i] = sequence_list[i].shape[0] # prefixed context provided prefix_context = sampling_kwargs.get("prefix_context", None) if prefix_context is not None: prefix_text, prefix_resps, _ = prefix_context # to-do: check if we actually need to drop the middle "" text_list = [ torch.concat([prefix[:-1], text[1:]]) for prefix, text in zip( prefix_text, text_list ) ] # feeding this into the NAR-len should automatically handle things sequence_list = [ resps if resps.dim() == 1 else resps[:, 0] for resps in prefix_resps ] null_text = [ torch.tensor([1, 2], device=device, dtype=torch.int16) for _ in range(batch_size) ] null_prom = [ None for _ in range(batch_size) ] # get next in sequence iterator = trange(max_duration // max(1, self.causal_size), desc="AR", disable=disable_tqdm) for n in iterator: if batch_size == 1 and task_list[0] in ["phn", "un-phn"]: text_list = [ sequence_list[i] if task in ["phn"] else text_list[i] for i, task in enumerate(task_list) ] raw_text_list = [ sequence_list[i] if task in ["un-phn"] else raw_text_list[i] for i, task in enumerate(task_list) ] else: if raw_text_list is not None: raw_text_list = [ sequence_list[i] if task in text_task else raw_text_list[i] for i, task in enumerate(task_list) ] else: text_list = [ sequence_list[i] if task in text_task else text_list[i] for i, task in enumerate(task_list) ] resps_list = [ sequence_list[i] if task not in text_task else resps_list[i] for i, task in enumerate(task_list) ] quant_levels = [ 0 for _ in range( max( batch_size, beam_width ) ) ] inputs = self.inputs( task_list=task_list, text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, raw_text_list=raw_text_list, quant_levels=quant_levels, ) # to-do: find an elegant way to write this output = super().forward( inputs=inputs, state=state, #layer_skip_variables=sampling_layer_skip_variables, output_attentions=entropix_sampling, ) if cfg_strength > 0: null_inputs = super().inputs( text_list=null_text, proms_list=null_prom, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, quant_levels=quant_levels, ) null_output = super().forward( inputs=null_inputs, quant_levels=quant_levels, #layer_skip_variables=sampling_layer_skip_variables, ) logits = cfg_logits( logits=output.logits, null=null_output.logits, strength=cfg_strength, rescale=cfg_rescale, lens=[ resp.shape[0] + 1 for resp in resps_list ] ) logits, state = output.logits, output.state sampled = super().sample( logits=logits, prev_list=[ resps_list[i] if task not in text_task else text_list[i] for i, task in enumerate( task_list ) ], **(sampling_kwargs | {"attentions": output.attentions if entropix_sampling else None}), ) ids = sampled.ids if cfg.experimental: if sampled.entropy: metrics.append( sampled.entropy ) elif sampled.scores: #metrics.append( [ { "p": p[0], "exited_layer": output.exited_layer } for p in sampled.scores ] ) metrics.append( [ { "p": p[0] } for p in sampled.scores ] ) if mirostat is not None: mirostat = sampled.scores elif beam_width > 0: # expand tuple s = sampled.scores # first step, expand batch if batch_size == 1: batch_size = beam_width text_list = text_list * beam_width proms_list = proms_list * beam_width sequence_list = sequence_list * beam_width task_list = task_list * beam_width start_slice = start_slice * beam_width stopped = torch.zeros(batch_size, device=device).bool() scores = [ scores[i] + score for i, score in enumerate(s) ] # append tokens for i, token in enumerate(ids): task = task_list[i] stop_token = audio_stop_token if task not in text_task else text_stop_token if stop_token in token: stopped[i] = True sequence_list[i] = torch.cat([sequence_list[i], token.to(device)]) # stop token found # stopped |= r == stop_token if stopped.all().item(): iterator.close() break # to-do for layerskip / speculative sampling: rerun the last sequence again at max depth """ if metrics: from ..plot import plot_sample_metrics filename = "metrics" if entropix_sampling: filename += f'[entropix_sampling]' if sampling_layer_skip_exit_layer >= 0: filename += f'[{sampling_layer_skip_exit_layer+1}]' plot_sample_metrics( metrics, filename=f'{filename}.png' ) """ # pick the best scoring candidate # desu this is always going to be candidate 0 if beam_width: sequence_list = sequence_list[:1] task_list = task_list[:1] # remove stop token sequence_list = [self._prune(r, audio_stop_token if task_list[i] not in text_task else text_stop_token) for i, r in enumerate(sequence_list)] # remove sequence_list = [ sequence_list[i][start_slice[i]:] for i, task in enumerate( task_list ) ] if refine_on_stop: # get how much we need to slice from the end slice_lengths = [ sequence.shape[-1] for sequence in sequence_list ] # -1 for the stop token logits = [ logit[-length-1:-1] for logit, length in zip(logits, slice_lengths) ] # greedy sample from the sequence refined_list = [ logit.argmax(dim=-1) for logit in logits ] # to-do: compare scores # set the "refined" list as the output sequence_list = refined_list # slice out prefix if prefix_context is not None: prefix_text, prefix_resps, prefix_lens = prefix_context sequence_list = [ resps[l:] for resps, l in zip(sequence_list, prefix_lens) ] return sequence_list def forward( self, task_list: list[Tensor] | None = None, text_list: list[Tensor] | None = None, proms_list: list[Tensor] | None = None, resps_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, raw_text_list: list[Tensor] | None = None, training: bool | None = None, disable_tqdm=False, use_lora=None, **sampling_kwargs, ): # deduce batch_size # deduce batch_size if text_list: device = text_list[0].device batch_size = len(text_list) elif raw_text_list: device = raw_text_list[0].device batch_size = len(raw_text_list) elif proms_list: device = proms_list[0].device batch_size = len(proms_list) elif resps_list: device = resps_list[0].device batch_size = len(resps_list) # implicitly set for training if training is None and text_list is not None and resps_list is not None: n_levels_set = {r.shape[-1] for r in resps_list} n_levels = next(iter(n_levels_set)) training = n_levels == self.n_resp_levels # is training if training: return self.forward_train( task_list=task_list, text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, raw_text_list=raw_text_list, ) # is NAR if (len_list is not None or resps_list is not None) and text_list is not None: return self.forward_nar( task_list=task_list, text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, raw_text_list=raw_text_list, disable_tqdm=disable_tqdm, use_lora=use_lora, **sampling_kwargs, ) # is AR return self.forward_ar( task_list=task_list, text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, raw_text_list=raw_text_list, disable_tqdm=disable_tqdm, use_lora=use_lora, **sampling_kwargs, ) def example_usage(): cfg.device = "cuda" cfg.trainer.backend = "local" if cfg.audio_backend == "dac": cfg.sample_rate = 44_100 from functools import partial from einops import repeat from tqdm import tqdm from ..emb.qnt import decode_to_file, unload_model, trim_random, repeat_extend_audio, concat_audio, merge_audio from ..engines import Engine, Engines from ..utils import wrapper as ml from ..utils import setup_logging import numpy as np import re # cfg.model.experimental.masking_train_p = 0.5 cfg.hyperparameters.batch_size = 1 cfg.hyperparameters.gradient_accumulation_steps = 1 setup_logging() def load_artifact( path ): artifact = np.load(path, allow_pickle=True)[()] text = torch.tensor( cfg.tokenizer.encode( artifact["metadata"]["phonemes"] ) ).to(dtype=torch.uint8, device=cfg.device) audio = torch.from_numpy(artifact["codes"].astype(np.int16))[0, :, :].t().to(dtype=torch.int16, device=cfg.device) return text, audio text, audio = load_artifact(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}") batch_size = cfg.hyperparameters.batch_size text_list = [ text ] * batch_size proms_list = [ audio[:cfg.dataset.frames_per_second, :] ] * batch_size resps_list = [ audio[:cfg.dataset.frames_per_second * 4, :] ] * batch_size kwargs = { 'n_text_tokens': 256, 'n_audio_tokens': 1024, 'd_model': 1024, # 256, # 1024, # 1536 'n_heads': 16, # 4, # 16, # 24 'n_layers': 12, # 32 'n_experts': 1 if not cfg.model else cfg.model.experts, 'p_dropout': 0.1, 'l_padding': 8 if cfg.optimizations.fp8 else 0, 'config': cfg.model } bos_id, space_id, eos_id = cfg.tokenizer.encode( " " ) available_tasks = [] + (["tts-ar"] if "ar" in cfg.model.capabilities else []) + (["tts-nar"] if "len" in cfg.model.capabilities else []) model = AR_NAR(**kwargs).to(cfg.device) steps = 500 // batch_size optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy" scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else "" learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None params = model.parameters() if cfg.optimizations.dadaptation: # do not combine the two if scheduler == "schedulefree": scheduler = "" learning_rate = 1.0 if optimizer == "prodigy": if learning_rate is None: learning_rate = 1.0 optimizer = ml.Prodigy elif optimizer == "adagrad": if learning_rate is None: learning_rate = 1.0e-2 optimizer = ml.Adagrad elif optimizer == "adamw": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.AdamW elif optimizer == "sdg": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.SGD elif optimizer == "apollo": if learning_rate is None: learning_rate = 0.01 optimizer = ml.Apollo """ target_params = [] target_modules_list = ["attn", "mlp"] for module_name, module in model.named_modules(): if not (isinstance(module, torch.nn.Linear)): continue if not any(target_key in module_name for target_key in target_modules_list): continue target_params.append(module.weight) param_ids = [id(p) for p in target_params] regular_params = [p for p in model.parameters() if id(p) not in param_ids] params = [{'params': regular_params}, {'params': target_params, 'rank': 1, 'proj': 'random', 'scale_type': 'tensor', 'scale': 128,'update_proj_gap': 200, 'proj_type': 'std'}] """ params = [{'params': params, 'rank': 1, 'proj': 'random', 'scale_type': 'tensor', 'scale': 128,'update_proj_gap': 200, 'proj_type': 'std'}] else: raise ValueError(f"Unrecognized optimizer: {optimizer}") _logger.info(f"Optimizer: {optimizer}\tLearning rate: {learning_rate}") optimizer = optimizer(params, lr=learning_rate) if scheduler == "schedulefree": if isinstance(optimizer, ml.AdamW): scheduler = ml.schedulefree.AdamWScheduleFree elif isinstance(optimizer, ml.SGD): scheduler = ml.schedulefree.SGDScheduleFree else: scheduler = None if scheduler is not None: _logger.info(f"Scheduler: {scheduler}") optimizer = scheduler( model.parameters(), lr = learning_rate ) if cfg.optimizations.replace and cfg.optimizations.linear: model = ml.replace_linear( model ) if cfg.optimizations.replace and cfg.optimizations.embedding: model = ml.replace_embedding( model ) """ cfg.optimizations.model_offloading = { "devices": ["cuda:0", "cpu"], # "limits": [ 0.9, -1 ], "assign": [[ f'layers.{i}.' for i in range(0,10) ], [ f'layers.{i}.' for i in range(11,12) ] + [ "model.norm" ]], # "limits": [ 256 * (1024 ** 2), -1 ] } """ engine = Engine(model=model, optimizer=optimizer) engines = Engines({"ar+nar": engine}) engines.setup() """ if cfg.optimizations.model_offloading: model = ml.offload_model( model, policy=cfg.optimizations.model_offloading ) """ """ torch.save( { 'module': model.state_dict() }, f"./data/{cfg.model.arch_type}.pth" ) """ _logger.info(f"AR+NAR ({cfg.model.arch_type}, {cfg.audio_backend}) parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") @torch.no_grad() def sample_data(t=None): if isinstance(t, list): tasks = t texts = [ text_list[0].to(cfg.device) if task not in text_task else None for i, task in enumerate( tasks ) ] proms = [ proms_list[0].to(cfg.device) if task not in text_task else [ "stt" ] for i, task in enumerate( tasks ) ] resps = [ None if task not in text_task else resps_list[0].to(cfg.device) for i, task in enumerate( tasks ) ] return texts, proms, resps, tasks texts = [] proms = [] resps = [] tasks = [] for i in range(batch_size): task = random.choice(available_tasks) if t is None else t text = text_list[i].to(cfg.device) prom = proms_list[i].to(cfg.device) resp = resps_list[i].to(cfg.device) # do nothing if task == "stt": prom = [ task ] else: task = "tts" if random.random() > 0.1 or "len" not in cfg.model.capabilities else "len" texts.append( text ) proms.append( prom ) resps.append( resp ) tasks.append( task ) return texts, proms, resps, tasks @torch.inference_mode() def sample( name, steps=500, task=None ): engine.eval() text_list, proms_list, resp_list, task_list = sample_data( task ) if task == "tts-nar": len_list = engine( text_list=text_list, proms_list=proms_list, task_list=["len"], max_steps=5, temperature=0.0 ) len_list = [ resp_list[0].shape[0] for l in len_list ] resps_list = engine( text_list=text_list, proms_list=proms_list, len_list=len_list ) else: resps_list = engine( text_list=text_list, proms_list=proms_list, task_list=["tts"], max_duration=steps, temperature=1.0 ) resps_list = engine( text_list=text_list, proms_list=proms_list, resps_list=resps_list, temperature=0.0 ) for i, o in enumerate(resps_list): _ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.{task}.wav", device=cfg.device) unload_model() def train(): engine.train() t = trange(steps) for i in t: texts, proms, resps, tasks = sample_data() stats = {"step": i} stats |= engine.traverse(text_list=texts, proms_list=proms, resps_list=resps, task_list=tasks, training=True) stats |= {"grad_norm": engine.get_global_grad_norm()} tqdm.write(f"{stats}") """ torch.save( { 'module': model.state_dict() }, f"./data/{cfg.model.arch_type}.pth" ) """ #sample("init", 5) train() """ if cfg.optimizations.compile: model = ml.compile_model(model, backend=cfg.optimizations.compile) """ for task in available_tasks: sample("final", task=task) engines.quit() if __name__ == "__main__": example_usage()