import math import torch import torch.nn.functional as F import traceback import numpy as np from typing import Literal, overload from functools import partial from einops import rearrange from torch import Tensor, einsum, nn from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision from .retnet import RetNetDecoder, RetNetConfig from .transformer import SinusoidalEmbedding, Block as TransformerBlock def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def _join(x: tuple[Tensor], sep: Tensor): """ Args: x: (k t d) sep: (d) """ ret = x[0] for i in range(1, len(x)): ret = torch.cat((ret, sep[None], x[i]), dim=0) return ret def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) m = m.to(x) return x, m # Simple filter to modify a token's probability if it shows up in the past # `one_time` will only apply the penalty once # `decay` is a factor that will exponentially apply to how far away it is def reptition_penalize( logits, previous, factor=1.0, decay=0.0, one_time=True ): if factor == 1.0 or previous is None: return logits unique = set() priors = reversed(previous.tolist()) for distance, token in enumerate(priors): # skip if we're only applying the decay once if one_time and token in unique: continue distance += 1 logits[:, token] /= factor * (distance ** decay) # add to set if we care about it if one_time: unique.add(token) return logits # Simple "filter" that modifies the logit for the stop token, based on the sequence length # `length` is the length of the sequence currently # `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences # `token` is the stop token. def length_penalize( logits, length, factor=0.0, token=-1 ): if factor == 0.0: return logits logits[:, token] /= (length ** factor) return logits # Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens per batch example in the output """ if top_k > 0: top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens > 1: # Keep at least min_tokens (set to min_tokens-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits # picks the top K tokens amongst a batch of logits # logits: [Tensor] list of logits # candidates: [(batch, token)] list, where batch indicates the index of the logits the given token is from def top_k_logits_list( logits_list, k ): # ( batch, tokens ) => ( batch x tokens ) logits = torch.cat( logits_list ) candidates = list(torch.topk(logits.flatten(), k).indices.tolist()) # perform top-k across all logits for i, index in enumerate(candidates): t = [] N = np.prod(logits.size()) for n in logits.size(): N //= n t.append(index // N) index %= N candidates[i] = tuple(t) return candidates # Credit to: https://github.com/basusourya/mirostat/ # performs mirostat-based sampling # logits: Tensor of logit probabilities # state: the mirostat state def mirostat_sample( logits, state = None ): def compute_k(prob, n, tau): num = 0 den = 0 for i in range(100): b = prob[i]/prob[i+1] t = (i+2)/(i+1) num += math.log(b)*math.log(t) den += math.log(t)**2 s = num/den eps = s-1 k = ((eps*(2**(tau)))/(1-n**(-eps)))**(1/s) k = round(k) return k if "max_surprise" not in state: state["max_surprise"] = state["tau"] * 2 if "error_surprise" not in state: state["error_surprise"] = 0 if "running_total_surprise" not in state: state["running_total_surprise"] = 0 sorted_logits, sorted_indices = torch.sort( logits[-1, :], descending=True ) prob_original = torch.softmax( sorted_logits, dim=-1 ).tolist() k = compute_k(prob_original, state["n"], state["max_surprise"]) + 1 sorted_logits = sorted_logits[0:k] sorted_indices = sorted_indices[0:k] prob_topk = torch.softmax(sorted_logits, dim = 0) prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True) state["index_surprise"] = math.log2(1/prob_original[prev_i]) state["running_total_surprise"] += state["index_surprise"] state["error_surprise"] = state["index_surprise"] - state["tau"] state["max_surprise"] -= state["eta"] * state["error_surprise"] state["token"] = sorted_indices[prev_i] return state # automagically parses a batch-list and returns it as a list class Embedding(nn.Embedding): def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) class MultiEmbedding(nn.Module): """ This embedding sums embeddings on different levels. """ def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False): super().__init__() self.monolithic = monolithic self.max_n_levels = max_n_levels self.n_tokens = n_tokens self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) # to-do: select quant level from given quant_levels tensor if given (i.e. through the resp_emb) # I imagine this is an oversight in the NAR. def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None) -> list[Tensor]: if len(x_list) == 0: return [] # this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR # the NAR cannot share RVQ-bin level 0 with the AR for the resp_emb if self.monolithic: w = self.weight[:1] if quant_levels is None else self.weight[1:] else: w = self.weight padded_x_list = [] for i, xi in enumerate(x_list): xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k wi = w.shape[0] - xi.shape[1] xi = F.pad(xi, (0, 0, 0, wi)) # t l k padded_x_list.append(xi.to(w)) x = torch.cat(padded_x_list) # n l k x = einsum("l k d, n l k -> n d", w, x) x_list = x.split([*map(len, x_list)]) return x_list # Embedding that sums each RVQ-bin level within a given input acoustic prompt class AudioEmbedding(nn.Module): def __init__(self, l_tokens, token_dim): super().__init__() self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens]) def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None ) -> list[Tensor]: res_list = [] for i, xi in enumerate(x_list): # prom if quant_levels is None and xi.shape[-1] > 1: x = sum( [ self.embeddings[k]( xi[:, k] ) for k in range(xi.shape[-1]) ] ) # AR resp elif quant_levels is None or quant_levels[i] == 0: x = self.embeddings[0]( xi[:, 0] ) # NAR resp else: x = sum( [ self.embeddings[k+1]( xi[:, k] ) for k in range(xi.shape[-1]) ] ) res_list.append(x) return res_list class Base(nn.Module): @property def causal(self) -> bool: raise NotImplementedError @property def arch_type(self) -> str: raise NotImplementedError @property def norm_type(self): raise NotImplementedError @property def n_prom_levels(self) -> int: raise NotImplementedError @property def n_resp_levels(self) -> int: raise NotImplementedError @property def n_max_levels(self) -> int: raise NotImplementedError @property def n_langs(self) -> int: raise NotImplementedError @property def n_tasks(self) -> int: raise NotImplementedError @property def recurrent_chunk_size(self) -> int: raise NotImplementedError @property def rotary_embedding_base(self) -> float: return 10000 @property def interleave(self) -> bool: return False @property def monolithic(self) -> bool: return False @property def version(self) -> int: return 1 @property def stop_token(self): if not self.causal: raise ValueError("Not using stop token!") return self.n_tokens @property def ignore_index(self): return -100 @staticmethod def _samplewise_merge_tensors(*l, sep: Tensor | None): if sep is None: cat = torch.cat else: cat = partial(_join, sep=sep) return [*map(cat, zip(*l))] def __init__( self, n_tokens: int = 1024, d_model: int = 512, n_heads: int = 8, n_layers: int = 12, p_dropout: float = 0.1, config = None, ): super().__init__() self.config = config self.activation_checkpointing = self.config.activation_checkpointing if self.config is not None else True self.n_tokens = n_tokens self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers # +1 to include the stop token # to-do: undo this dogshit mistake; tasks tokens should be delegated to its own embedding n_prom_tokens = n_tokens n_resp_tokens = n_tokens + (1 if self.causal else 0) # AR requires a stop token to... know when to stop self.text_emb = Embedding(n_tokens, d_model) if self.version == 1: # legacy n_prom_tokens += (self.n_tasks - 1) # old models have the task tokens in the prom self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model) self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic) else: # [1024] * 8 self.proms_emb = AudioEmbedding([n_prom_tokens] * self.n_prom_levels, d_model) # [1025] + [1024] * 8 self.resps_emb = AudioEmbedding([n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1), d_model) # self.langs_emb = Embedding(self.n_langs, d_model) # self.tasks_emb = Embedding(self.n_tasks, d_model) self.sep = nn.Parameter(torch.randn(d_model)) if self.arch_type == "transformer": self.sin_emb = SinusoidalEmbedding(d_model) self.blocks = nn.ModuleList([TransformerBlock( d_model=d_model, n_heads=n_heads, p_dropout=p_dropout, causal=self.causal, norm_type=self.norm_type, n_levels=self.n_resp_levels, ) for _ in range(n_layers) ]) elif self.arch_type == "retnet": self.retnet = RetNetDecoder(RetNetConfig( vocab_size=n_tokens, decoder_embed_dim=d_model, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout, checkpoint_activations=self.activation_checkpointing, chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0, recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0, no_output_layer=True, decoder_normalize_before=True, rotary_embedding_base=self.rotary_embedding_base, # 10000 )) self.classifier = nn.Linear(d_model, n_resp_tokens) self.accuracy_metric = MulticlassAccuracy( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.precision_metric = MulticlassPrecision( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, #langs_list: list[Tensor] | None = None, #tasks_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, state: dict | None = None, ): x_list = self._samplewise_merge_tensors( self.text_emb(text_list), #self.langs_emb(langs_list), self.proms_emb(proms_list), #self.tasks_emb(tasks_list), self.resps_emb(resps_list, quant_levels), sep=self.sep, ) x, m = list_to_tensor(x_list) batch_size = len(text_list) device = x.device if state is not None and self.arch_type == "retnet": # prefill if len(state) == 0: prefill_size = x.shape[1] # run the initial prompt to fill the KV cache for n in range(prefill_size): xi = x[:, n, :].unsqueeze(1) self.retnet(xi, incremental_state=state, token_embeddings=xi, features_only=True) # grab last token(s) x = x[:, -1, :].unsqueeze(1) if self.arch_type == "transformer": # ensures we specify a quant_level for the transformer implementation's AdaLN l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels l = l.to(device) # inject position information x = self.sin_emb.add_pe(x) # pass our inputs through the transformer for block in self.blocks: x = block(x, m, l) elif self.arch_type == "retnet": # pass our inputs through the RetNet x, _ = self.retnet(x, incremental_state=state, token_embeddings=x, features_only=True) # output projection layer with masking x = self.classifier(x) * m # Remove padding logits = [ hi[:li] for hi, li in zip(x, map(len, x_list)) ] # compute loss if the target is given if targ_list is not None: ignore_sep = torch.tensor(self.ignore_index, device=device) # create a tensor sequence with one RVQ-bin of the input prompt, but with `ignore_index`, as the prompt is not neeeded for computing the loss against prom_list = [ torch.full_like(t[..., 0], self.ignore_index) for t in proms_list ] # remake input sequence text_prom_list = self._samplewise_merge_tensors( text_list, prom_list, sep=ignore_sep ) # process each batch for i in range(len(text_prom_list)): # for the AR and NAR, shift the text/input prompt into the future by 1, and ignore the rolled back token text_prom_list[i] = text_prom_list[i].roll(-1, dims=0) text_prom_list[i][-1] = self.ignore_index # for the AR, shift the target response into the future by 1, and ignore the rolled back text token if quant_levels is None or quant_levels[i] == 0: targ_list[i] = targ_list[i].clone().roll(-1, dims=0) # clone ensures it's not an aliased copy/view of resps targ_list[i][-1] = self.stop_token # create the new target sequence to compute the loss against target = torch.cat( self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep ) ) inputs = torch.cat( logits ) self.loss = dict( # "nll" was in the original implementation and should actually just be called something else nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index ) ) self.stats = dict( acc = self.accuracy_metric( inputs, target ), precision = self.precision_metric( inputs, target ), ) return logits def sample( self, logits: list[Tensor], resps_list: list[Tensor], quant_levels: Tensor | None = None, temperature: float = 1.0, top_k: int = -100, top_p: float = 1.0, repetition_penalty: float = 1.0, repetition_penalty_decay: float = 0.0, length_penalty: float = 0.0, beam_width: int = 0, mirostat: list[dict] | None = None, ): # (NAR) return the entire generated response if quant_levels is not None: logits = [ logit[-l:] for logit, l in zip(logits, map(len, resps_list)) ] # (AR chunkwise) return the last chunkwise piece elif self.causal and self.recurrent_chunk_size > 0: logits = [ logit[-l:] for logit, l in zip(logits, self.recurrent_chunk_size) ] # (AR) return just the last code else: logits = [ logit[-1:] for logit in logits ] # perform repetition penalizing logits = [ reptition_penalize(logit, previous=resps[:, -1], factor=repetition_penalty, decay=repetition_penalty_decay) for logit, resps in zip( logits, resps_list ) ] # (AR) perform length penalizing if quant_levels is None and self.causal: logits = [ length_penalize(logit, length=l + 1, factor=length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, resps_list) ) ] # scale our logits by the temp logits = [ logit / temperature for logit in logits ] # perform top_k/top_p filtering of our logits if top_k > 0 or top_p < 1.0: logits = [ top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p) for logit in logits ] # do mirostat sampling # currently incompatible with beam searching with the way the two are implemented, perhaps a night of brain bashing can make the two work if mirostat is not None: # mirostat sampling return [ mirostat_sample(logit, state=state) for logit, state in zip(logits, mirostat) ] # do beam search (naive implementation) # picks the top-k across all batches, and re-batches those resultant tokens # returns the logit scores as well to be P-concatted with the previous scores # to-do: not naively implement beam searching if beam_width > 1: candidates = top_k_logits_list( logits, beam_width ) res = [ torch.tensor(token, device=logits[batch].device, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ] scores = [ logits[batch].flatten()[token] for batch, token in candidates ] return res, scores # and sample return [ Categorical(logits=logit).sample() for logit in logits ] def example_usage(): from ..config import cfg cfg.trainer.backend = "local" cfg.trainer.check_for_oom = False from functools import partial from einops import repeat from ..emb.qnt import decode_to_file from ..engines import Engine, Engines from tqdm import tqdm, trange from ..utils import wrapper as ml from .ar import AR from .nar import NAR device = "cuda" x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels) symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178} def tokenize(content, lang_marker="en"): split = content.split(" ") phones = [f""] + [ " " if not p else p for p in split ] + [f""] return torch.tensor([*map(symmap.get, phones)]).to() kwargs = { 'n_tokens': 1024, 'd_model': 1024, 'n_heads': 16, 'n_layers': 12, } models = { "ar": AR(**kwargs).to(device), "nar": NAR(**kwargs).to(device) } for name, model in models.items(): print(f"{name} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") engines = Engines({ name: Engine(model=model, optimizer=ml.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() }) train = True qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device) text_list = [ tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device), #tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device), ] proms_list = [ qnt.to(device), ] resps_list = [ qnt.to(device), ] def sample( name, steps=600 ): AR = None NAR = None engines.eval() for name, engine in engines.items(): if name[:2] == "ar": AR = engine elif name[:3] == "nar": NAR = engine resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0) resps_list = [r.unsqueeze(-1) for r in resps_list] codes = NAR( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 ) decode_to_file(resps_list[0], f"./data/ar.{name}.wav", device=device) decode_to_file(codes[0], f"./data/ar+nar.{name}.wav", device=device) if train: sample("init", 15) engines.train() t = trange(500) for i in t: stats = {"step": i} """ for name, engine in engines.items(): stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list) """ stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list}) tqdm.write(f"{stats}") else: for name, engine in engines.items(): engine.module.load_state_dict(torch.load(f"./data/{name}.pth")) sample("final") if __name__ == "__main__": example_usage()