import math import torch import torch.nn.functional as F import numpy as np import time from torch import Tensor, einsum, nn from einops import rearrange from dataclasses import asdict, dataclass, field from .utils import clamp # Simple filter to modify a token's probability if it shows up in the past # `one_time` will only apply the penalty once # `decay` is a factor that will exponentially apply to how far away it is # this is split between applying autoregressively (applying to the last token, starting from the end), and applying non-autoregressively (starting from the beginning, and applying to tokens in the future) def reptition_penalize( logits, previous=None, factor=1.0, decay=0.0, one_time=False, limit=75 ): if factor == 1.0 or previous is None: return logits unique = set() priors = reversed(previous) for distance, token in enumerate(priors): # rep-pen range if limit and distance >= limit: continue # skip if we're only applying the decay once if one_time and token in unique: continue distance += 1 logits[:, token] /= factor * (distance ** decay) # add to set if we care about it if one_time: unique.add(token) return logits """ # I do not know why this is a regression... def reptition_penalize( logits, previous=None, factor=1.0, decay=0.0, one_time=False, limit=75 ): if factor == 1.0 or previous is None: return logits seq_len = logits.shape[0] prev_len = len( previous ) # apply autoregressively if prev_len < seq_len: unique = set() priors = reversed(previous) for i, token in enumerate(priors): # rep-pen range if limit and i >= limit: continue # skip if we're only applying the decay once if one_time and token in unique: continue distance = i + 1 logits[-1, token] /= factor * (distance ** decay) # add to set if we care about it if one_time: unique.add(token) # apply non-autoregressively else: for i, token in enumerate( previous ): # apply to next token start = i + 1 # apply either up to limit tokens, or to the end end = start + limit if limit > 0 else seq_len start = clamp(start, 0, seq_len - 1) end = clamp(end, 0, seq_len - 1) for j in range( start, end ): distance = j - i logits[j, token] /= factor * (distance ** decay) return logits """ # Simple "filter" that modifies the logit for the stop token, based on the sequence length # `length` is the length of the sequence currently # `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences # `token` is the stop token. def length_penalize( logits, length, factor=0.0, token=-1 ): if factor == 0.0: return logits logits[:, token] /= (length ** factor) return logits # Simple way to ban tokens def ban_tokens( logits, tokens ): for token in tokens: # token not in logits if logits.shape[-1] >= token: continue logits[:, token] = -float("inf") return logits # Performs min_p filtering # From https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/generation/logits_process.py#L537 def min_p_filtering( logits, min_p=0.0, min_tokens_to_keep=32 ): if min_p <= 0.0: return logits # Convert logits to probabilities probs = torch.softmax(logits, dim=-1) # Get the probability of the top token for each sequence in the batch top_probs, _ = probs.max(dim=-1, keepdim=True) # Calculate the actual min_p threshold by scaling min_p with the top token's probability scaled_min_p = min_p * top_probs sorted_indices = torch.argsort(logits, descending=True, dim=-1) sorted_indices_to_remove = torch.gather(probs < scaled_min_p, dim=-1, index=sorted_indices) sorted_indices_to_remove[..., :min_tokens_to_keep] = False indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) return logits.masked_fill(indices_to_remove, -float("inf")) # Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens per batch example in the output """ if top_k > 0: top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens > 1: # Keep at least min_tokens (set to min_tokens-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits # credit to https://github.com/LostRuins/koboldcpp/pull/464 // https://github.com/kalomaze/koboldcpp/tree/dynamic-temp def dynamic_temperature( logits, temperature=1.0, min_temperature = 0.0, k = 10, sigmoidCenterPoint = 0.5 ): # loop over logits[:], as the NAR will have logits.shape[0] > 1 for i in range(logits.shape[0]): sum_exp = 0.0 maximum = torch.max( logits[i] ) for logit in logits[i]: sum_exp += math.exp( logit - maximum ) prob_max_token_before_temp = 1.0 / sum_exp dynamic_temperature = temperature - (temperature - min_temperature) / (1 + math.exp(-k * (prob_max_token_before_temp - sigmoidCenterPoint))) logits[i] /= dynamic_temperature return logits # picks the top K tokens amongst a batch of logits # logits: [Tensor] list of logits # candidates: [(batch, token)] list, where batch indicates the index of the logits the given token is from def top_k_logits_list( logits_list, k ): # ( batch, tokens ) => ( batch x tokens ) logits = torch.cat( logits_list ) candidates = list(torch.topk(logits.flatten(), k).indices.tolist()) # perform top-k across all logits for i, index in enumerate(candidates): t = [] N = np.prod(logits.size()) for n in logits.size(): N //= n t.append(index // N) index %= N candidates[i] = tuple(t) return candidates # Credit to: https://github.com/basusourya/mirostat/ # performs mirostat-based sampling # logits: Tensor of logit probabilities # state: the mirostat state def mirostat_sample( logits, state = None ): def compute_k(prob, n, tau): num = 0 den = 0 for i in range(100): b = prob[i]/prob[i+1] t = (i+2)/(i+1) num += math.log(b)*math.log(t) den += math.log(t)**2 s = num/den eps = s-1 k = ((eps*(2**(tau)))/(1-n**(-eps)))**(1/s) k = round(k) return k if "max_surprise" not in state: state["max_surprise"] = state["tau"] * 2 if "error_surprise" not in state: state["error_surprise"] = 0 if "running_total_surprise" not in state: state["running_total_surprise"] = 0 sorted_logits, sorted_indices = torch.sort( logits[-1, :], descending=True ) prob_original = torch.softmax( sorted_logits, dim=-1 ).tolist() k = compute_k(prob_original, state["n"], state["max_surprise"]) + 1 sorted_logits = sorted_logits[0:k] sorted_indices = sorted_indices[0:k] prob_topk = torch.softmax(sorted_logits, dim = 0) prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True) state["index_surprise"] = math.log2(1/prob_original[prev_i]) state["running_total_surprise"] += state["index_surprise"] state["error_surprise"] = state["index_surprise"] - state["tau"] state["max_surprise"] -= state["eta"] * state["error_surprise"] state["token"] = sorted_indices[prev_i] return state # Credits to: https://github.com/oobabooga/text-generation-webui/pull/5677 # performs DRY sampling # * (honestly it looks close to rep pen anyways but what do I know) # `logits` are the scores used to sample against # `previous` are the prior tokens to penalize with # `factor` is the scalar multiplier # `base` is the base number to raise to the (length - allowed_length)th power # `allowed_length` limits the range to apply DRY to def dry_sampling( logits, previous=None, factor=0.0, base=1.75, allowed_length=2 ): if factor == 0.0 or previous is None: return logits lengths = {} for i, token in enumerate( previous ): length = 1 while length < max(allowed_length, 50): j = i - length # Start of input reached. if j < 0: break # Start of match reached. if previous[j] != previous[-length-1]: break length += 1 lengths[token] = max(length, lengths[token]) if token in lengths else length for token, length in lengths.items(): if length < allowed_length: break logits[:, token] -= factor * base ** (length - allowed_length) return logits LN_2 = 0.69314718056 # ln(2) = 1.0 / LOG2_E # Grabbed from https://github.com/xjdr-alt/entropix/blob/main/entropix/sampler.py def calculate_entropix_metrics( logits, attentions=None, dim=-1, use_stats=False ): """Calculate the entropy and varentropy of the probability distribution using logsoftmax.""" log_probs = F.log_softmax(logits, dim=dim) probs = torch.exp(log_probs) entropy = -torch.sum(probs * log_probs, dim=dim) / LN_2 # Convert to base-2 varentropy = torch.sum(probs * (log_probs / LN_2 + entropy.unsqueeze(-1))**2, dim=dim) if attentions is None: return { "logits_entropy": torch.mean(entropy).item(), "logits_varentropy": torch.mean(varentropy).item(), } last_attention_scores = attentions[-1].unsqueeze(0) # ( bsz, heads, seq_len, seq_len ) attention_probs = F.softmax(last_attention_scores, dim=-1) if use_stats: attn_stats = AttnStats.new( 1, attentions.shape[0], attentions.shape[1], logits.device ) for idx, attn in enumerate( attentions ): attn_stats.update( attn.unsqueeze(0)[:, :, -1, :], idx ) # (bsz, heads, last_token, seq_len) attn_entropy = attn_stats.entropy attn_varentropy = attn_stats.varentropy else: attn_entropy = -torch.sum(attention_probs * torch.log2(torch.clamp(attention_probs, 1e-10, 1.0)), dim=-1) attn_varentropy = torch.var(attn_entropy, dim=1) # Add a small epsilon to avoid NaN when all values are the same attn_varentropy = torch.where(torch.isnan(attn_varentropy), torch.zeros_like(attn_varentropy), attn_varentropy) mean_attention = torch.mean(attention_probs, dim=1) agreement = torch.mean(torch.abs(attention_probs - mean_attention.unsqueeze(1)), dim=(1, 2)) interaction_strength = torch.mean(torch.abs(last_attention_scores), dim=(1, 2, 3)) return { "logits_entropy": torch.mean(entropy).item(), "logits_varentropy": torch.mean(varentropy).item(), "attn_entropy": torch.mean(attn_entropy).item(), "attn_varentropy": torch.mean(attn_varentropy).item(), "agreement": torch.mean(agreement).item(), "interaction_strength": interaction_strength.item(), # torch.mean(interaction_strength).item(), "action": -1 } from typing import NamedTuple class AttnStats(NamedTuple): entropy: torch.Tensor # (bsz, n_layers, num_heads) varentropy: torch.Tensor # (bsz, n_layers, num_heads) n_layers: int n_heads: int @classmethod def new(cls, bsz: int, n_layers: int, n_heads: int, device = "cuda") -> 'AttnStats': return cls( entropy=torch.zeros((bsz, n_layers, n_heads), dtype=torch.float32, device=device), varentropy=torch.zeros((bsz, n_layers, n_heads), dtype=torch.float32, device=device), n_layers=n_layers, n_heads=n_heads ) @property def avg_entropy(self): return self.entropy.sum(dim=-1, keepdim=False) # Average across heads @property def avg_varentropy(self): return self.varentropy.sum(dim=-1, keepdim=False) # Average across heads @property def std_error(self): return torch.sqrt(torch.mean(self.varentropy)) / (self.n_heads * self.n_layers) def update(self, scores: torch.Tensor, layer_idx: int): # scores shape: (bsz, n_heads, seqlen, n_words) probs = torch.nn.functional.softmax(scores, dim=-1) new_entropy = -torch.sum(torch.where(probs > 0, probs * torch.log(probs), torch.tensor(0.0)), dim=-1) new_varentropy = torch.sum(probs * (torch.log(probs) + new_entropy.unsqueeze(-1))**2, dim=-1) # Update entropy and varentropy tensors self.entropy[:, layer_idx, :] = new_entropy self.varentropy[:, layer_idx, :] = new_varentropy return self # to-do: play around with these values @dataclass() class EntropixSamplerConfig: temp: float = 0.666 top_p: float = 0.90 top_k: int = 27 min_p: float = 0.01 # was 0.03 # Turn this down to 0.01 to reduce the shoggoth low_ent_thresh: float = 0.1 # 3.0 low_vent_thresh: float = 0.1 # 3.0 med_ent_thresh: float = 3.0 # 6.0 high_ent_thresh: float = 5.0 # 9.0 high_vent_thresh: float = 5.0 # 9.0 # TODO this is a bit of a nasty mess, but also makes all the hyperparameters visible helv_attn_ent_offset: float = 1.3 helv_attn_ent_coef: float = 0.2 lehv_interaction_strength_offset: float = 1.2 lehv_interaction_strength_coef: float = 0.3 hehv_attn_ent_coef: float = 0.2 hehv_attn_vent_offset: float = 2.0 hehv_attn_vent_coef: float = 0.5 # TODO not convinced this should n_adaptive_samples: int = 5 # Adaptive sampling parameters ada_temp_logits: float = 0.3 ada_temp_attn: float = 0.2 ada_temp_agree: float = 0.2 ada_top_p: float = 0.1 ada_top_k_int: float = 0.3 ada_top_k_agree: float = 0.2 ada_min_p: float = 0.5 ada_score_logits_ent: float = 0.1 ada_score_attn_ent: float = 0.2 ada_score_logits_vent: float = 0.3 ada_score_attn_vent: float = 0.4 ada_score_agree: float = 0.5 ada_score_int: float = 0.6 # extra stuff temperature_max: float = 1.25 temperature_min: float = 0.5 top_k_min: int = 1 top_k_max: int = 1024 top_p_min: int = 0.1 top_p_max: int = 1.0 min_p_min: int = 0.01 min_p_max: int = 0.5 Exponential = torch.distributions.exponential.Exponential(1.0) # Doing as close to the original sampling method just to reduce variance def _sample_entropix( logits, temperature=1.0, top_k=0, top_p=1.0, min_p=0.0, cfg=EntropixSamplerConfig(), ): if top_k == 0: top_k = logits.shape[-1] logit = logits[-1, :] temperature = clamp( float(temperature), cfg.temperature_min, cfg.temperature_max ) top_p = clamp( float(top_p), cfg.top_p_min, cfg.top_p_max ) top_k = clamp( int(top_k), cfg.top_k_min, cfg.top_k_max ) min_p = clamp( float(min_p), cfg.min_p_min, cfg.min_p_max ) probs = F.softmax(logit / temperature, dim=-1) # Apply min_p sampling if min_p > 0.0: p_max = float(torch.max(probs, dim=-1, keepdim=True).values) indices_to_remove = probs < (min_p * p_max) logit = torch.where(indices_to_remove, torch.full_like(logit, float('-inf')), logit) # Apply top-k sampling top_k_probs, top_k_indices = torch.topk(probs, k=min(top_k, probs.shape[-1])) probs_sort = torch.flip(top_k_probs, dims=[-1]) probs_idx = torch.flip(top_k_indices, dims=[-1]) probs_sum = torch.cumsum(probs_sort, dim=-1) # Apply top-p sampling mask = torch.where(probs_sum - probs_sort > top_p, torch.tensor(1.0, device=logit.device), torch.tensor(0.0, device=logit.device)) probs_sort = probs_sort * (1 - mask) probs_sort = probs_sort / torch.sum(probs_sort, dim=-1, keepdim=True) q = Exponential.sample(probs_sort.shape) """ # q = torch.rand(probs_sort.shape, generator=generator, device=probs_sort.device) """ next_token = torch.argmax(probs_sort / q, dim=-1, keepdim=True) next_token_g = torch.take_along_dim(probs_idx, next_token, dim=-1) return next_token_g def sample_entropix( logits, attentions, temperature=1.0, top_k=27, top_p=1.0, min_p=0.0, cfg=EntropixSamplerConfig(), metrics_only=False, ): """ temperature = cfg.temp top_k = cfg.top_k top_p = cfg.top_p """ # logits: ( seq_len, vocab ) # attentions: ( layer, heads, seq_len, seq_len ) metrics = calculate_entropix_metrics( logits[-1:, :], attentions[:, :, -1:, :] ) ent, vent = metrics["logits_entropy"], metrics["logits_varentropy"] attn_ent, attn_vent = metrics["attn_entropy"], metrics["attn_varentropy"] agreement = metrics["agreement"] interaction_strength = metrics["interaction_strength"] # Low Entropy, Low Varentropy: "flowing with unspoken intent" if ent < cfg.low_ent_thresh and vent < cfg.low_vent_thresh: metrics["action"] = 0 res = logits[-1, :].argmax(dim=1) # High Entropy, Low Varentropy: "treading carefully, asking clarifying questions" elif ent > cfg.high_ent_thresh and vent < cfg.low_vent_thresh: metrics["action"] = 1 # sample with slightly higher temperature temperature *= cfg.helv_attn_ent_offset + cfg.helv_attn_ent_coef * attn_ent # Increase temperature based on attention entropy res = _sample_entropix( logits, temperature, top_k, top_p, min_p, cfg=cfg ) # Low Entropy, High Varentropy: "exploring forks in the path" elif ent < cfg.high_ent_thresh and vent > cfg.high_vent_thresh: metrics["action"] = 2 temperature *= cfg.lehv_interaction_strength_offset + cfg.lehv_interaction_strength_coef * interaction_strength # Increase temperature based on interaction strength top_k = max(5, int(top_k * (1 + 0.5 * (1 - agreement)))) # Increase top_k when agreement is low res = _sample_entropix( logits, temperature, top_k, top_p, min_p, cfg=cfg ) # High Entropy, High Varentropy: "resampling in the mist" elif ent > cfg.med_ent_thresh and vent > cfg.high_vent_thresh: metrics["action"] = 3 # Use high temperature and adjusted top_p based on attention metrics temperature *= cfg.hehv_attn_vent_offset + cfg.hehv_attn_vent_coef * attn_vent # Increase temperature based on attention varentropy top_p = max(0.5, top_p - cfg.hehv_attn_ent_coef * attn_ent) # Decrease top_p when attention entropy is high res = _sample_entropix( logits, temperature, top_k, top_p, min_p, cfg=cfg ) # Middle ground: use adaptive sampling else: metrics["action"] = 4 log_softmax = F.log_softmax(logits, dim=-1) logits_uncertainty = ent + vent attn_uncertainty = attn_ent + attn_vent temperature *= 1 + cfg.ada_temp_logits * logits_uncertainty + cfg.ada_temp_attn * attn_uncertainty - cfg.ada_temp_agree * agreement top_p = top_p * (1 + cfg.ada_top_p * attn_vent) top_k = round(float(top_k * (1 + cfg.ada_top_k_int * interaction_strength - cfg.ada_top_k_agree * agreement))) min_p = cfg.min_p * (1 - cfg.ada_min_p * logits_uncertainty) samples = [ _sample_entropix( logits.clone(), temperature, top_k, top_p, min_p, cfg=cfg ) for _ in range(cfg.n_adaptive_samples) ] def score_sample(sample): one_hot = F.one_hot( sample, logits.shape[-1] ) log_prob = torch.sum(log_softmax * one_hot) confidence_score = ( (1 - ent) * cfg.ada_score_logits_ent + (1 - attn_ent) * cfg.ada_score_attn_ent + (1 - vent) * cfg.ada_score_logits_vent + (1 - attn_vent) * cfg.ada_score_attn_vent + agreement * cfg.ada_score_agree + interaction_strength * cfg.ada_score_int ) """ if 1024 in sample: return 1000 """ return log_prob + confidence_score sample_scores = [ score_sample(sample) for sample in samples ] best_sample_idx = torch.argmax(torch.asarray(sample_scores)) res = samples[best_sample_idx] """ metrics = { "attn_entropy": metrics["attn_entropy"], "attn_varentropy": metrics["attn_varentropy"], } """ """ metrics["temperature"] = temperature metrics["top_k"] = top_k metrics["top_p"] = top_p metrics["min_p"] = min_p """ return res, metrics