""" Core model for handling all VALL-E tasks. This should handle all the "low" level things such as: * parsing inputs to sequences * converting sequences to embeddings * forward pass * processing loss and returning logits Additional functionality (preparing inputs, generating full audio) should be delegated to classes that inheret the base model """ import math import torch import torch.nn.functional as F import random import numpy as np import re from time import perf_counter from collections import namedtuple from typing import Literal, overload, Optional, Tuple from functools import partial from einops import rearrange from torch import Tensor, einsum, nn from torch.nn import Embedding from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision from .arch import * from ..utils import wrapper as ml, clamp from ..samplers import * from ..emb.qnt import encode_as_embedding # yuck, kind of needed from ..data import get_task_symmap # these seem more elegant than a dict Logits = namedtuple('Logits', ['logits', 'state', 'inputs', 'loss', 'attentions', 'hidden_states', 'exited_layer']) Sampled = namedtuple('Sampled', ['ids', 'logits', 'scores', 'entropy']) LossStats = namedtuple('LossStats', ['loss', 'stats']) """ from ..utils.pattern import DelayedPatternProvider, VALLEPattern """ summed_embeddings_task = [ "stt" ] special_tasks = [ "len", "stt" ] non_tokened_names = ["task", "dropout_mask", "classifier_level"] task_outputs = { "tts": "resp", "stt": "text", "len": "len", } def _dropout_mask( input, p=None ): # cosine scheduling if p is None: t = random.random() p = math.cos(t * math.pi * 0.5) seq = [ random.random() < p for _ in range( input.shape[0] ) ] mask = torch.tensor( seq, dtype=torch.bool, device=input.device ) return mask def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def _join(x: tuple[Tensor], sep: Tensor): """ Args: x: (k t d) sep: (d) """ ret = x[0] for i in range(1, len(x)): ret = torch.cat((ret, sep[None], x[i]), dim=0) return ret def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) """ m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) """ m = m.to(x).int() return x, m def _interleave_sequence_reshape( input: list[torch.Tensor], dim=-1 ): shape = (input[0].shape[0] * len(input), input[0].shape[dim] ) return torch.concat( [ i.t() for i in input ] ).t().reshape( shape ) def _interleave_sequence_flatten( input: list[torch.Tensor] ): return torch.concat( [ i.t() for i in input ] ).t().flatten() # automagically parses a batch-list and returns it as a list """ class Embedding(nn.Embedding): def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) """ # Deprecated implementation class MultiEmbedding(nn.Module): def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False): super().__init__() self.monolithic = monolithic self.max_n_levels = max_n_levels self.n_tokens = n_tokens self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) # to-do: select quant level from given quant_levels tensor if given (i.e. through the resps_emb) # I imagine this is an oversight in the NAR. def forward(self, x_list: list[Tensor], quant_level: int | list[int] | Tensor | None = None) -> list[Tensor]: if len(x_list) == 0: return [] # this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR # the NAR cannot share RVQ-bin level 0 with the AR for the resps_emb if self.monolithic: w = self.weight[:1] if quant_level is None or quant_level == 0 else self.weight[1:] else: w = self.weight padded_x_list = [] for i, xi in enumerate(x_list): xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k wi = w.shape[0] - xi.shape[1] xi = F.pad(xi, (0, 0, 0, wi)) # t l k padded_x_list.append(xi.to(w)) x = torch.cat(padded_x_list) # n l k x = einsum("l k d, n l k -> n d", w, x) x_list = x.split([*map(len, x_list)]) return x_list # Embedding that sums each RVQ-bin level within a given input acoustic prompt # _Old, to preserve compat with previous models. class AudioEmbedding_Old(nn.Module): def __init__( self, l_tokens: int, # list of number of tokens (needed because AR resps includes stop token) token_dim: int, # dimensionality of the embedding levels: int | None = None, # number of RVQ-bins (I don't remember the specifics) ): super().__init__() # array of embeddings # proms are [0, resp_levels] # resp are split to where [0] is for the AR, and [1:] are reserved for NAR self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens]) # weight influencer for the influence for each level (desu this should be really useless because the weights in the embedding themselves should factor this) self.weight = nn.ParameterList([nn.Parameter( torch.tensor([1]) ) for i in range(levels)]) if levels is not None else None def forward(self, xi: Tensor, quant_level: Tensor | None = None ) -> Tensor: # prom if quant_level is None and xi.shape[-1] > 1: x = sum( [ self.embeddings[k]( xi[:, k] ) * (self.weight[k] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] ) # prom / AR resp elif quant_level is None or quant_level == 0: x = self.embeddings[0]( xi if xi.dim() == 1 else xi[:, 0] ) # NAR resp else: x = sum( [ self.embeddings[k+1]( xi[:, k] ) * (self.weight[k+1] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] ) return x # Embedding that sums each RVQ-bin level within a given input acoustic prompt # Mostly to handle some oversights and errors during testing class AudioEmbedding(nn.Module): def __init__( self, l_tokens: list[int], # list of number of tokens (needed because AR resps includes stop token) token_dim: int, # dimensionality of the embedding sums: bool = True, # whether to sum all previous layers of embeddings to factor in other RVQ bin levels (I do not know which way is better) l_names: list[str] = [], # names to map to indices ): super().__init__() # array of embeddings # proms are [0, resp_levels] # resp are split to where [0] is for the AR, and [1:] are reserved for NAR self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens]) # further experimentation is needed to see if this actually is useful self.sums = sums # self.names = l_names def forward(self, xi: Tensor, offset: int | None = None, quant_level: int | None = None, name: str | None = None, sums = None ) -> Tensor: if sums is None: sums = self.sums if quant_level is None: quant_level = 0 if xi.dim() == 1 else xi.shape[-1] - 1 # handle mapping from name if name in self.names: offset = self.names.index( name ) offset -= quant_level # offset by quant level since it'll iterate up that many levels if self.sums and quant_level > 0: x = sum( [ self.embeddings[k + offset]( xi[:, k] ) for k in range( quant_level ) ] ) else: k = quant_level x = self.embeddings[k + offset]( xi if xi.dim() == 1 else xi[:, k] ) return x # time-step embedding # for the NAR-len, since it probably most likely requires encoding the timestep class TimeEmbedding(nn.Module): def __init__( self, d_model ): super().__init__() self.emb = SinusoidalEmbedding(d_model) self.mlp = nn.Sequential( nn.Linear(d_model, d_model*4), nn.SiLU(), nn.Linear(d_model*4, d_model), ) def forward( self, t ): t = self.emb(t) t = self.mlp(t) return t # per-level classification # it might actually be "better" in the long run to only have one output head like a traditional LM, and just de-stitch it here instead of doing modulus math and whatever like the HF/experimental impl class Classifiers(nn.Module): def __init__( self, l_tokens: list[int], # list of number of tokens (needed because AR resps includes stop token) token_dim: int, # dimensionality of the embedding l_names: list[str] | None = None, # list of names to map to each classifier ): super().__init__() self.proj = nn.ModuleList([nn.Linear(token_dim, n_tokens) for n_tokens in l_tokens]) self.names = l_names def indices( self, names ): if isinstance( names[-1], int ): return names return [ self.names.index(name) for name in names ] def forward(self, xi: Tensor, levels: list[int] | None = None, names: list[str] | None = None ) -> Tensor: dtype = xi.dtype device = xi.device if levels and isinstance( levels[-1], str ): names = levels levels = [] # map names to levels if names and not levels: levels = [ self.names.index(name) for name in names ] xi = [ self.proj[l]( x ) for x, l in zip(xi, levels) ] # pad if needed # to-do: validate that this causes ZERO issues max_size = max([ x.shape[-1] for x in xi ]) xi = [ #x if l == 0 else x if x.shape[-1] == max_size else torch.cat( [x, torch.full( (x.shape[0], max_size - x.shape[-1]), -float("inf"), device=device, dtype=dtype) ], dim=-1 ) for x, l in zip(xi, levels) ] return torch.stack( xi ) class Metrics(nn.Module): def __init__( self, l_tokens: int | list[int], top_k = 10, average="micro", multidim_average="global", ignore_index = -100 ): super().__init__() self.accuracy = nn.ModuleList([ MulticlassAccuracy( n_tokens, top_k=top_k, average=average, multidim_average=multidim_average, ignore_index=ignore_index, ) for n_tokens in l_tokens ]) self.precision = nn.ModuleList([ MulticlassPrecision( n_tokens, top_k=top_k, average=average, multidim_average=multidim_average, ignore_index=ignore_index, ) for n_tokens in l_tokens ]) def calc_accuracy( self, inputs, targets, classifier_levels ): return sum( [ self.accuracy[l]( input[:, :self.accuracy[l].num_classes], target ) for target, input, l in zip( targets, inputs, classifier_levels ) ] ) / len( inputs ) def calc_precision( self, inputs, targets, classifier_levels ): return sum( [ self.precision[l]( input[:, :self.precision[l].num_classes], target ) for target, input, l in zip( targets, inputs, classifier_levels ) ] ) / len( inputs ) def __call__(self, *args, **kwargs): return dict( acc=self.calc_accuracy(*args, **kwargs), ) class Base(nn.Module): def loss_factor(self, k): if self.config is None: return 1.0 return self.config.loss_factor(k) def _prune(self, l: Tensor, stop = None): if stop is None: stop = self.stop_token indices = (l == stop).nonzero() if len(indices) == 0: return l return l[: indices.min().item()] # these probably need to live in an interleaved model, as pattern-ing is targeted for a sole AR model """ def codes_to_pattern(self, codes): # expand if not batched if codes.dim() == 2: codes = codes.unsqueeze(0) # [batch, timestep, rvq level] (B, T, K) => [batch, rvq level, timestep] (B, K, T) codes = codes.permute(0, 2, 1) B, K, T = codes.shape # map codes [B, K, T] into pattern sequence [B, K, S] using special_token_id for masked tokens pattern = self.pattern_provider.get_pattern(T) sequence_codes, sequence_indexes, sequence_mask = pattern.build_pattern_sequence( codes.contiguous(), self.stop_token, keep_only_valid_steps=False, ) # (B, K, T) => (B, T, K) return sequence_codes.permute(0, 2, 1) def logits_from_pattern(self, logits, pattern): logits = logits.permute(0, 3, 1, 2) # [B, card, K, S] logits, logits_indexes, logits_mask = pattern.revert_pattern_logits( logits, float('nan'), keep_only_valid_steps=False ) logits = logits.permute(0, 2, 3, 1) # [B, K, T, card] logits_mask = logits_mask[None, :, :].expand(B, -1, -1) # [K, T] -> [B, K, T] return logits, logits_mask """ def __init__( self, n_text_tokens: int = 256, n_audio_tokens: int = 1024, d_model: int = 512, n_heads: int = 8, n_layers: int = 12, p_dropout: float = 0.1, n_experts: int = 1, l_padding: int = 0, training = True, attention = None, config = None, ): super().__init__() self.training = training self.teaching = False self.config = config self.n_text_tokens = n_text_tokens self.n_audio_tokens = n_audio_tokens self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers self.n_experts = n_experts self.l_padding = l_padding self.ignore_index = -100 self.n_resp_levels = self.config.resp_levels if self.config else n_resp_levels self.n_max_levels = self.config.max_levels if self.config else n_resp_levels self.capabilities = self.config.capabilities if self.config else ["ar", "nar"] self.gradient_checkpointing = self.config.gradient_checkpointing if self.config is not None else True self.stop_token = self.n_audio_tokens # id 1024 self.causal = "ar" in self.capabilities or "len" in self.capabilities self.version = self.config.version if self.config is not None else 5 self.causal_size = self.config.experimental.causal_size if self.config is not None else (1 if self.causal else 0) self.arch_type = self.config.arch_type if self.config is not None else "llama" # check if requested arch is unavailable if self.arch_type in ERROR_ARCHES: raise ERROR_ARCHES[self.arch_type] if not attention: attention = self.config.attention if self.config is not None else "auto" # crunge if self.config is not None and config.teacher: self.teaching = True self.training = False attention_backend = attention audio_embedding_sums = self.config.experimental.audio_embedding_sums if self.config is not None else False split_classifiers = self.config.experimental.split_classifiers if self.config is not None else False tie_classifier_to_embedding = self.config.experimental.tie_classifier_to_embedding if self.config is not None else False audio_embedding_mode = self.config.experimental.audio_embedding_mode if self.config is not None else "" unified_position_ids = self.config.experimental.unified_position_ids if self.config is not None else True interleave = self.config.experimental.interleave if self.config is not None else False noncausal_masks = self.config.experimental.noncausal_masks if self.config is not None else False masking_ratio = self.config.experimental.masking_ratio if self.config is not None else False ignore_inputs_for_loss = self.config.experimental.ignore_inputs_for_loss if self.config is not None else False layerskip = self.config.experimental.layerskip if self.config is not None else False layerskip_r = self.config.experimental.layerskip_r if self.config is not None else 2 layerskip_p_max = self.config.experimental.layerskip_p_max if self.config is not None else 0.1 layerskip_e_scale = self.config.experimental.layerskip_e_scale if self.config is not None else 0.1 n_tasks = self.config.tasks if self.config is not None else 8 n_langs = self.config.langs if self.config is not None else 2 n_tones = self.config.tones if self.config is not None else 1 # pure AR if "nar" not in self.capabilities: n_resp_tokens = n_audio_tokens + 1 l_tokens = [n_resp_tokens] * self.n_resp_levels resp_l_names = [f'AR:{i}:{i}' for i in range( self.n_resp_levels )] # NAR-len model elif "len" in self.capabilities: # +1 to include the stop or mask token n_resp_tokens = n_audio_tokens + ( 1 if self.causal_size > 0 else 0 ) if "ar" in self.capabilities: l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1) + [n_resp_tokens] resp_l_names = ['AR:0:0'] + [f'NAR:{i}:{i+1}' for i in range( self.n_resp_levels - 1 )] + ['NAR:0:0'] else: l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1) resp_l_names = ['NAR:0:0'] + [f'NAR:{i}:{i+1}' for i in range( self.n_resp_levels - 1 )] # AR+NAR model else: # +1 to include the stop or mask token n_resp_tokens = n_audio_tokens + ( 1 if self.causal_size > 0 else 0 ) l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1) resp_l_names = ['AR:0:0'] + [f'NAR:{i}:{i+1}' for i in range( self.n_resp_levels - 1 )] classifier_l_tokens = l_tokens + [ n_text_tokens ] classifier_l_names = resp_l_names + [ "stt" ] if "len" in self.capabilities: classifier_l_tokens += [ n_text_tokens ] classifier_l_names += ["len"] self.unified_position_ids = unified_position_ids self.interleave = interleave self.layerskip = layerskip self.inject_timestep_embedding = False # results in bad output self.masking_ratio = masking_ratio self.ignore_inputs_for_loss = ignore_inputs_for_loss self.noncausal_masks = noncausal_masks # use internal attention mechanism for now because I dont have a better way to handle mixed causal/noncausal masks for other attention backends """ if noncausal_masks: attention_backend = "default" """ self.text_emb = Embedding(n_text_tokens, d_model) self.langs_emb = None self.tones_emb = None self.tasks_emb = None self.rvq_l_emb = None self.len_emb = None # it would be nicer for these to be a token or live inside an embedding self.sep = nn.Parameter(torch.randn(d_model)) self.dropout_token = nn.Parameter(torch.randn(d_model)) if self.version == 1: # legacy n_audio_tokens += (n_tasks - 1) # old models have the task tokens in the prom self.proms_emb = MultiEmbedding(self.n_resp_levels, n_audio_tokens, d_model) self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic) elif self.version < 5: # [1024] * 8 self.proms_emb = AudioEmbedding_Old( [n_audio_tokens] * self.n_resp_levels, d_model, levels=self.n_resp_levels if self.version > 3 else None, ) # [1024 + STOP] + [1024] * 8 self.resps_emb = AudioEmbedding_Old( l_tokens, d_model, levels=self.n_resp_levels if self.version > 3 else None, ) else: self.proms_emb = AudioEmbedding( [n_audio_tokens] * self.n_resp_levels, d_model, sums=audio_embedding_sums, ) self.resps_emb = AudioEmbedding( l_tokens, d_model, sums=audio_embedding_sums, l_names=resp_l_names, ) if self.version >= 3: self.langs_emb = Embedding(n_langs, d_model) if n_langs > 0 else None self.tasks_emb = Embedding(n_tasks, d_model) if n_tasks > 0 else None # never actually got added... I kept forgetting to classify all my audio for speaker's tone if self.version >= 4: self.tones_emb = Embedding(n_tones, d_model) if n_tones > 0 else None # mamba requires this if a model does both AR and NAR tasks # this *might* help for AR and NAR tasks since we explicitly specify the current RVQ level for a sequence, rather than having it "encoded" in the embeddings # this ***might*** let me also unify the proms_emb and resps_embedding if self.version >= 5: # "len" RVQ level-0 gets an additional token self.rvq_l_emb = Embedding(self.n_resp_levels, d_model) # experimental NAR-only mode self.len_emb = Embedding(11, d_model) self.time_emb = None # TimeEmbedding(d_model) # if not masking_ratio else None if attention_backend == "auto": attention_backend = "sdpa" """ if AVAILABLE_ATTENTIONS: attention_backend = AVAILABLE_ATTENTIONS[0] else: attention_backend = "default" """ hf_attention = attention_backend HF_ATTENTIONS = ["eager", "sdpa", "flash_attention_2"] if attention_backend not in HF_ATTENTIONS: hf_attention = None if attention_backend not in AVAILABLE_ATTENTIONS: raise ValueError(f"Requesting attention `{attention_backend}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}") # override any requested padding size if attention_backend == "flash_attn_v100": self.l_padding = 32 elif attention_backend == "fused_attn": self.l_padding = 128 if self.arch_type == "transformer": self.sin_emb = SinusoidalEmbedding(d_model) self.blocks = nn.ModuleList([TransformerBlock( d_model=d_model, n_heads=n_heads, p_dropout=p_dropout if training else 0.0, causal=self.causal, norm_type="ln", # adaln n_levels=self.n_resp_levels, ) for _ in range(n_layers) ]) elif self.arch_type in ["mistral", "mixtral"]: if n_experts <= 1: self.model = MistralModel(MistralConfig( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=self.config.experimental.kv_heads if self.config is not None and self.config.experimental.kv_heads > 0 else n_heads, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) else: self.model = MixtralModel(MixtralConfig( vocab_size =n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=self.config.experimental.kv_heads if self.config is not None and self.config.experimental.kv_heads > 0 else n_heads, sliding_window=75 * 12, # 12 second context window output_router_logits=training, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, num_local_experts=n_experts, num_experts_per_tok=min(2, n_experts), attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) if attention_backend not in HF_ATTENTIONS: self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend ) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type == "llama": LlamaClass = LlamaModel_Adapted # if (self.layerskip or "len" in self.capabilities) else LlamaModel if n_experts <= 1: self.model = LlamaClass(LlamaConfig( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=n_heads, sliding_window=75 * 12, # 12 second context window hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) # replace with desired attention if attention_backend not in HF_ATTENTIONS: self.model = ml.replace_attention( self.model, klass=LlamaAttention_Adapted, target=LlamaAttention, mode=attention_backend ) else: self.model = MixtralModel(MixtralConfig( vocab_size =n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=n_heads, sliding_window=75 * 12, # 12 second context window output_router_logits=training, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, num_local_experts=n_experts, num_experts_per_tok=min(2, n_experts), attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) if attention_backend not in HF_ATTENTIONS: self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend ) if self.layerskip: self.model.layer_dropout_p = layerskip_p_max self.model.early_exit_scale = layerskip_e_scale self.model.early_exit_r = layerskip_r if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type == "retnet": kwargs = dict( vocab_size=n_resp_tokens, decoder_embed_dim=d_model, decoder_value_embed_dim =d_model * 2, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout if training else 0.0, checkpoint_activations=self.gradient_checkpointing, activation_fn="gelu", use_layernorm=self.version < 3, use_biases=self.version < 3, use_glu=self.version >= 3, chunkwise_recurrent=self.causal and self.causal_size > 0, recurrent_chunkwise_size=self.causal_size if self.causal else 0, no_output_layer=True, decoder_normalize_before=True, rotary_embedding_base=10000 ) if n_experts > 1: kwargs.update(dict( use_xmoe=True, moe_freq=1, moe_expert_count=n_experts, moe_gating_use_fp32=False, )) self.model = RetNetDecoder(RetNetConfig(**kwargs)) elif self.arch_type in ["mamba2"]: self.model = Mamba2Model(Mamba2Config( vocab_size=n_resp_tokens, hidden_size=d_model, expand=2, num_hidden_layers=n_layers*2, residual_in_fp32=True, )) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type in ["mamba"]: self.model = MambaModel(MambaConfig( vocab_size=n_resp_tokens, hidden_size=d_model, expand=2, num_hidden_layers=n_layers*2, residual_in_fp32=True, )) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) else: raise RuntimeError(f'Unknown arch specified: {self.arch_type}') if hasattr( self.model, "embeddings" ): del self.model.embeddings if not split_classifiers: self.classifier = nn.Linear(d_model, n_resp_tokens) self.classifiers = None self.accuracy_metric = MulticlassAccuracy( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.precision_metric = MulticlassPrecision( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.metrics = None else: self.classifier = None self.classifiers = Classifiers( classifier_l_tokens, d_model, l_names=classifier_l_names ) self.accuracy_metric = None self.precision_metric = None self.metrics = Metrics( classifier_l_tokens ) """ if tie_classifier_to_embedding: for i, proj in enumerate( self.classifiers.proj ): self.classifiers.proj[i].weight = self.resps_emb.embeddings[i].weight """ def _forward( self, inputs, mask = None, is_causal = None, position_ids = None, state = None, layer_skip_lambda = None, output_attentions = False, output_hidden_states = False, ): x = inputs m = mask #.squeeze(-1).int() aux_loss = None attentions = None hidden_states = None # HF transformer derived model if self.arch_type in ["llama", "mistral", "mixtral"]: kwargs = dict( inputs_embeds=x, attention_mask=m, past_key_values=state, position_ids=position_ids, use_cache=False, # not self.training, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, is_causal=is_causal, ) if self.n_experts > 1 and self.training: kwargs["output_router_logits"] = True if self.layerskip and layer_skip_lambda is not None: kwargs["layer_skip_lambda"] = layer_skip_lambda output = self.model(**kwargs) x = output["last_hidden_state"] # to-do: figure out why KV caching doesn't work #if not self.training: if state is not None: state = output["past_key_values"] if output_attentions: attentions = output["attentions"] if output_hidden_states: hidden_states = output["hidden_states"] if self.n_experts > 1 and self.training: router_logits = output["aux_loss"] aux_loss = self.model.config.router_aux_loss_coef * load_balancing_loss_func( router_logits, self.model.config.num_local_experts, self.model.config.num_experts_per_tok ) elif self.arch_type == "transformer": # ensures we specify a quant_level for the transformer implementation's AdaLN l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels l = l.to(device) # inject position information x = self.sin_emb.add_pe(x) # pass our inputs through the transformer for block in self.blocks: x = block(x, m, l) elif self.arch_type == "retnet": # pass our inputs through the RetNet x, _ = self.model(x, incremental_state=state, token_embeddings=x, features_only=True) if _ is not None and "l_aux" in _ and self.n_experts > 1: aux_loss = torch.sum(torch.stack([ t for t in _["l_aux"] if t is not None])) * 0.001 elif self.arch_type in ["mamba","mamba2"]: kwargs = dict( inputs_embeds=x, attention_mask=m, #cache_params=state, use_cache=False, # not self.training, #position_ids=position_ids, #output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) output = self.model(**kwargs) x = output["last_hidden_state"] if state is not None: state = output["cache_params"] if output_attentions: attentions = output["attentions"] if output_hidden_states: hidden_states = output["hidden_states"] # process it into a format that I like if output_hidden_states: # hidden_states is actually layers + 1, as hidden_states[0] == embedding........... hidden_states = [ state for state in hidden_states[1:] ] # apply normalization to these states (to-do: check if this matters) # but skip the last state, as it already is normalized hidden_states = [ x if i == self.n_layers - 1 else self.model.norm(output.hidden_states[i]) for i, state in enumerate( hidden_states ) ] return Logits(x, state, inputs, aux_loss, attentions, hidden_states, None) # takes a bunch of separate lists and parses them into an ordered array of tuples to guide input sequence creation def inputs( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, task_list: list[str] | None = None, time_list: list[Tensor] | None = None, quant_levels: int | list[int] | Tensor | None = None ): device = text_list[0].device batch_size = len(text_list) inputs = [ [] for _ in range(batch_size) ] for i in range(batch_size): quant_level = quant_levels[i] if quant_levels is not None else 0 task_type = task_list[i] if task_list is not None else "tts" timestep = time_list[i] if time_list is not None else None classifier_level = None # insert task type as a string inputs[i].append( ( "task", task_type ) ) # to-do: maybe not split the below blocks up # might be beneficial in the event I need to use a difference sequence, such as STT tasks # Base-line TTS task # Sequence: # prom /may/ include tokens inside to help guide things, per SpeechX if f'<{task_type}>' in get_task_symmap() and task_type not in special_tasks: # insert the text prompt if text_list is not None and text_list[i] is not None: inputs[i].append( ( "text", text_list[i] ) ) # insert lang token if we're trained for it if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None: inputs[i].append( ( "lang", lang_list[i] ) ) # insert RVQ level guidance token if the model is versioned for it if self.rvq_l_emb is not None and not self.interleave: inputs[i].append( ( "quant_level", torch.tensor([ quant_level ], device=device, dtype=torch.int16) ) ) classifier_level = "AR:0:0" if quant_level == 0 else f'NAR:{quant_level-1}:{quant_level}' # insert input audio prompt if proms_list is not None and proms_list[i] is not None: inputs[i].append( ( "prom", proms_list[i] ) ) # insert tone token if we're trained for it if "tone" in self.capabilities and tone_list is not None and tone_list[i] is not None: inputs[i].append( ( "tone", tone_list[i] ) ) # insert timestep token if timestep is not None: # force set to use this classifier level classifier_level = "NAR:0:0" # store timestep information if self.masking_ratio in ["random", "rand"]: # cosine scheduled timestep => masking ratio p = math.cos(timestep * math.pi * 0.5) # I don't think is is necessary as the timestep is encoded in the sequence by the number of masked tokens, probably. if self.inject_timestep_embedding: inputs[i].append( ("timestep", torch.tensor([timestep], device=device, dtype=self.time_emb.mlp[0].weight.dtype) ) ) else: # a paper said to use a fixed masking ratio of 0.8 for training # ...but I want to make it user adjustable p = self.masking_ratio # store dropout mask (if training, as this gets used later to mask the input embeddings if provided) if self.training: dropout_mask = _dropout_mask( resps_list[i], p ) inputs[i].append( ("dropout_mask", dropout_mask ) ) # insert the current output response if resps_list is not None and resps_list[i] is not None: inputs[i].append( ( "resp", resps_list[i] ) ) inputs[i].append( ("classifier_level", classifier_level) ) # Audio length prediction task # Sequence: elif task_type == "len": # throw an error so we don't silently train without this if self.len_emb is None: raise Exception(f"Requesting task `{task_type}` but corresponding embedding is not defined.") # insert the text prompt if text_list is not None and text_list[i] is not None: inputs[i].append( ( "text", text_list[i] ) ) # insert lang token if we're trained for it if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None: inputs[i].append( ( "lang", lang_list[i] ) ) # technically will always be level 0 but for the sake of keeing the input formatting coherent... if self.rvq_l_emb is not None: inputs[i].append( ( "quant_level", torch.tensor([ quant_level ], device=device, dtype=torch.int16) ) ) # insert input audio prompt if proms_list is not None and proms_list[i] is not None: inputs[i].append( ( "prom", proms_list[i] ) ) # insert tone token if we're trained for it if "tone" in self.capabilities and tone_list is not None and tone_list[i] is not None: inputs[i].append( ( "tone", tone_list[i] ) ) # insert output length tokens (if it exists) if len_list is not None and len_list[i] is not None: inputs[i].append( ( "len", len_list[i] ) ) # "encode" length to tokens for 0-9 + stop elif resps_list is not None and resps_list[i] is not None: # yes this could be encoded better inputs[i].append( ( "len", torch.tensor([ 0 ] + [ int(i) for i in str( resps_list[i].shape[0]) ] + [ 10 ], device=device, dtype=torch.int16) ) ) inputs[i].append( ("classifier_level", "len") ) # Speech-to-Text prediction task # Sequence: elif task_type == "stt": # insert the input response if resps_list is not None and resps_list[i] is not None: inputs[i].append( ( "resp", resps_list[i] ) ) # insert lang token if we're trained for it if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None: inputs[i].append( ( "lang", lang_list[i] ) ) # insert RVQ level guidance token if the model is versioned for it if self.rvq_l_emb is not None and not self.interleave: inputs[i].append( ( "quant_level", torch.tensor([ quant_level ], device=device, dtype=torch.int16) ) ) # insert the output text prompt if text_list is not None and text_list[i] is not None: inputs[i].append( ( "text", text_list[i] ) ) inputs[i].append( ("classifier_level", "stt") ) else: raise Exception(f'Unrecognized task: {task_type}') return inputs def inputs_to_embeddings( self, inputs: list, quant_levels: int | list[int] | Tensor | None = None ): # handles tasks where the prompt has task tokens injected in the middle def prompt_input_to_embedding( input, quant_level ): if isinstance(input, str): return self.tasks_emb( torch.tensor( [ get_task_symmap()[f'<{input}>'] ], device=device, dtype=torch.int16) ) # get RVQ level 0, or up to targetted RVQ level inference if self.version <= 4: return self.proms_emb( input if quant_level == 0 else input[:, :quant_level] ) return self.proms_emb( input if input.dim() == 1 else input[:, : 1 if quant_level == 0 else quant_level], quant_level = 0 if quant_level == 0 else quant_level - 1, # input is one below the target quant level offset = 0, ) # yuck token_dropout_rate = self.config.experimental.token_dropout_rate if self.config else 0.0 token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels if self.config else None if self.dropout_token is None or not self.training: token_dropout_rate = 0.0 if not token_dropout_rvq_levels: token_dropout_rvq_levels = [1, self.resp_levels] x_list = [] for batch_index, batch_input in enumerate(inputs): batch = [] quant_level = quant_levels[batch_index] if quant_levels is not None else 0 task_type = "tts" input_prom = None classifier_level = None dropout_mask = None timestep = None # pre-iterate for name, input in batch_input: if name == "classifier_level": classifier_level = input elif name == "dropout_mask": dropout_mask = input elif name == "timestep": timestep = input for name, input in batch_input: # technically can provide a map for input_name => embedding, but some embedding requires additional processing embedding = None # is already an embedding if name == "task": # noop # *maybe* inject a token for specifying task type task_type = input continue elif name == "text": embedding = self.text_emb( input ) device = embedding.device elif name == "quant_level" and self.rvq_l_emb is not None: embedding = self.rvq_l_emb( input ) elif name == "lang" and self.langs_emb is not None: embedding = self.langs_emb( input ) elif name == "prom": proms = [ input ] if isinstance(input, torch.Tensor) else input """ if proms is None: continue """ # to-do: probably insert separators if task requires it? embedding = torch.cat( [ prompt_input_to_embedding( input, quant_level ) for input in proms if input is not None ] ) elif name == "tone" and self.tones_emb is not None: embedding = self.tones_emb( input ) elif name == "resp": if self.interleave: embeddings = [ self.resps_emb( input[:, :l+1], #offset = 0, #quant_level = l, name = 'AR:0:0' if l == 0 else f'NAR:{l-1}:{l}', ) for l in range( input.shape[-1] ) ] embedding = _interleave_sequence_reshape( embeddings ) # if training NAR-len RVQ level 0 elif dropout_mask is not None: embedding = self.resps_emb( # if masked use masked token, else original token torch.where( dropout_mask, self.stop_token, input if input.dim() == 1 else input[:, 0] ), #quant_level = 0, name = classifier_level, ) # NAR-len elif classifier_level == "NAR:0:0": embedding = self.resps_emb( input if input.dim() == 1 else input[:, 0], #quant_level = 0, name = classifier_level, ) # cheat-y way to handle performing STT across all levels elif task_type in summed_embeddings_task: # we do a manual sum because I trained it to use the AR embeddings + NAR embeddings for STT...... embedding = sum([ self.resps_emb( input[:, :l+1], offset = 0 if l == 0 else 1, # or maybe set to 1 quant_level = l, #name = 'AR:0:0' if l == 0 else f'NAR:{l-1}:{l}', sums = False ) for l in range( input.shape[-1] - 1 ) ]) else: # get RVQ level 0, or up to targetted RVQ level inference if self.version <= 4: embedding = self.resps_emb( input if quant_level == 0 else input[:, :quant_level], quant_level ) else: """ offset = 0 if "nar" not in self.capabilities: offset = 0 elif quant_level > 0: offset = 1 embedding = self.resps_emb( input if input.dim() == 1 or quant_level == 0 else input[:, :quant_level], offset = offset, quant_level = 0 if quant_level == 0 else quant_level - 1, # input is one below the target quant level ) """ embedding = self.resps_emb( input if input.dim() == 1 or quant_level == 0 else input[:, :quant_level], #offset = 0 if classifier_level.startswith("AR:") else 1, name = classifier_level, quant_level = 0 if quant_level == 0 else quant_level - 1, # input is one below the target quant level ) # apply token dropout if token_dropout_rate > 0.0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]): steps = embedding.shape[0] - (1 if quant_level == 0 else 0) # do not mess with stop token for i in range( steps ): if random.random() > token_dropout_rate: continue embedding[i] = self.dropout_token elif name == "timestep" and self.time_emb is not None: embedding = self.time_emb( input ) elif name == "len" and self.len_emb is not None: embedding = self.len_emb( input ) else: # should probably raise an exception so things aren't processed silently continue batch.append(embedding) x_list.append( _join( batch, self.sep ) ) return x_list # get an attribute from a given input list def get_input( self, inputs, name, at=None, ): find_all = at is None res = [] if at is None else None for batch_index, batch_input in enumerate(inputs): if not find_all and batch_index != at: continue for n, input in batch_input: if n != name: continue if not find_all: return input res.append( input ) return res # creates position ids from a given input list # if not unified_position_ids, then each input segment will have its own sequence def inputs_to_position_ids( self, inputs: list, mask: Tensor, ): device = mask.device # shamelessly grabbed from modeling_llama.py ids = mask.long().cumsum(-1) - 1 ids.masked_fill_( mask == 0, 1 ) # there's a better way if not self.unified_position_ids: x_list = [] def get_input_token_length( name, input, task ): # task token if isinstance(input, str): return 1 # list of tokens if not isinstance(input, torch.Tensor): return sum( [ i.shape[0] for i in input if isinstance(i, torch.Tensor) ] ) # interleaved model if self.interleave and name == "resp": return input.shape[0] * input.shape[1] # ending input will not have a separator later return input.shape[0] for batch_index, batch_input in enumerate(inputs): # pre-iterate task = "tts" for name, input in batch_input: if name == "task": task = input batch = torch.cat( [ torch.tensor([*range(get_input_token_length(name, input, task) + (1 if name != task_outputs.get(task, name) else 0))], device=device, dtype=torch.int32) for name, input in batch_input if name not in non_tokened_names ] ) delta = ids[batch_index].shape[0] - batch.shape[0] if delta > 0: batch = torch.cat( [ batch, torch.tensor([1] * delta, device=device, dtype=torch.int32) ] ) x_list.append( batch ) ids = torch.stack( x_list ) return ids.to(device=device, dtype=torch.int32) def calc_loss( self, inputs: list, logits, quant_levels: list[int] | None = None, compute_hard_loss = True, compute_acc = True, ): loss = {} stats = {} device = logits[0].device batch_size = len(logits) classifier_levels = self.get_input( inputs, "classifier_level" ) # handles tasks where the prompt has task tokens injected in the middle def prompt_input_to_token( input, quant_level ): """ if isinstance(input, str): return torch.tensor( [ self.ignore_index ], device=device, dtype=torch.int16) return torch.tensor( [ self.ignore_index ] * input.shape[0], device=device, dtype=torch.int16) """ if isinstance(input, str): return torch.tensor( [ get_task_symmap()[f'<{input}>'] ], device=device, dtype=torch.int16) # ignore prom, fill with mock tokens, because the prom embeddings don't directly map to tokens if self.version < 4 or (self.version >= 5 and self.config and self.config.experimental.audio_embedding_sums): return torch.full_like(input[..., 0], self.ignore_index) return input if input.dim() == 1 else input[:, quant_level] for batch_index, batch in enumerate(inputs): quant_level = quant_levels[batch_index] target = [] causal = True task_type = "tts" dropout_mask = None classifier_level = None output_len = 0 for name, input in batch: if name == "task": task_type = input elif name == "dropout_mask": dropout_mask = input elif name == "classifier_level": classifier_level = input # autoregressive, causal if classifier_level.startswith("AR:"): causal = True # nonautoregressive, parallel elif classifier_level.startswith("NAR:"): causal = False it = 0 for name, input in batch: token = None ignored = False # non-tokened tasks if name in non_tokened_names: continue # prom can either be a tensor itself or a list of tensors and strings if name == "prom": # expand to list if not a list proms = [ input ] if isinstance(input, torch.Tensor) else input # iterate over the list to inject their tokens token = torch.cat( [ prompt_input_to_token( input, quant_level ) for input in proms if input is not None ] ) elif name == "resp": # mask found, apply it if dropout_mask is not None: # if mask use original token, else ignore token = torch.where( dropout_mask, input if input.dim() == 1 else input[:, 0], self.ignore_index ) # flatten elif self.interleave: token = _interleave_sequence_flatten( [ input[:, l] for l in range( input.shape[-1] ) ] ) # use resps as-is else: token = input if input.dim() == 1 else input[:, quant_level] # not a special input, inject as-is else: token = input if not isinstance(token, torch.Tensor): continue if token.is_floating_point(): ignored = True # grab range of our logits for later seq_len = token.shape[0] start, end = it, it+seq_len it += seq_len + 1 # +1 to incorporate the separator # deduce if a name for a task is an input or output if name != task_outputs.get(task_type, name): if self.ignore_inputs_for_loss: ignored = True else: output_len = seq_len if ignored: # pruned if self.config.loss_factors: continue # fill with ignored out tensor token = torch.tensor( [ self.ignore_index ] * input.shape[0], device=device, dtype=torch.int16) # perform loss calculation on the individual piece if self.config.loss_factors: loss_factor = self.loss_factor(name) if loss_factor == 0.0: continue logit = logits[batch_index][start:end] if causal and seq_len > 1: l = self.causal_size logit = logit[..., :-l, :] token = token[..., l:] # shift sequence to the right by one (or causal chunk size) if compute_hard_loss: nll = F.cross_entropy( logit, token.long(), ignore_index=self.ignore_index ) * loss_factor if f'{name}.nll' not in loss: loss[f'{name}.nll'] = [] loss[f'{name}.nll'].append( nll ) if compute_acc: if self.metrics is not None: metrics = self.metrics.calc_accuracy( [ logit ], [ token ], self.classifiers.indices([ classifier_level ]) ) else: metrics = self.accuracy_metric( logit, token ) if f'{name}.acc' not in stats: stats[f'{name}.acc'] = [] stats[f'{name}.acc'].append( metrics ) # add to list else: target.append( token ) # perofrm loss calculation on the entire sequence if not self.config.loss_factors: target = _join( target, torch.tensor(self.ignore_index, device=target[-1].device) ) logit = logits[batch_index] # shift if causal if causal: l = self.causal_size logit = logit[..., :-l, :] # shift the target so that token n... target = target[..., l:] # ...predicts token n + 1 if compute_hard_loss: nll = F.cross_entropy( logit, target, ignore_index=self.ignore_index ) if 'nll' not in loss: loss['nll'] = [] loss["nll"].append( nll ) if compute_acc: if self.metrics is not None: metrics = self.metrics.calc_accuracy( [ logit ], [ target ], self.classifiers.indices([ classifier_level ]) ) else: metrics = self.accuracy_metric( logit, target ) if 'acc' not in stats: stats['acc'] = [] stats["acc"].append( metrics ) # average loss = { name: sum( loss[name] ) / len( loss[name] ) for name in loss.keys() } stats = { name: sum( stats[name] ) / len( stats[name] ) for name in stats.keys() } return LossStats(loss, stats) def forward( self, inputs: list, quant_levels: list[int] | None = None, state: dict | list | None = None, layer_skip_variables: dict | None = None, output_attentions: bool = False, output_hidden_states: bool = False, ): # return early if it's "good" enough" # lambda because we need to capture the classifier_levels and mask exited_layer = self.n_layers def layer_skip_lambda( layer, logits ): nonlocal exited_layer kwargs = { "entropy_threshold": 0.05, "varentropy_threshold": 0.05, "min_layer": self.n_layers // 2, "max_layer": self.n_layers, } kwargs.update( layer_skip_variables ) # don't bother on early layers if layer < kwargs["min_layer"]: return False # bail if we want to force early layers if kwargs["max_layer"] < layer: return True # hidden states aren't normalized x = self.model.norm( logits ) # output projection layer with masking if self.classifier is not None: x = self.classifier(x) # * m elif self.classifiers is not None: logits = self.classifiers(logits, levels = classifier_levels) # * m # calculate metrics metrics = calculate_entropix_metrics( logits ) # exit early if "good enough"" early = metrics["logits_entropy"] <= kwargs["entropy_threshold"] and metrics["logits_varentropy"] <= kwargs["varentropy_threshold"] if early: exited_layer = layer #print( layer, early, metrics ) return early # derive quant levels from inputs if not provided if quant_levels is None: quant_levels = [ x.item() for x in self.get_input( inputs, "quant_level" ) ] x_list = self.inputs_to_embeddings( inputs, quant_levels ) x, mask = list_to_tensor(x_list) training = self.training teaching = self.teaching device = x.device batch_size = len(x_list) # pure AR if quant_levels is None: quant_levels = [ 0 for _ in range(batch_size) ] # we only need hidden states if we're training with layerskip if self.layerskip and training: output_hidden_states = True # pad our input and mask, but retain the original length by doing it after if self.l_padding and x.shape[1] % self.l_padding != 0: # pad input shape = list(x.shape) shape[1] = self.l_padding - shape[1] % self.l_padding padding = torch.zeros(shape, dtype=x.dtype, device=x.device) x = torch.cat([x, padding], dim=1) # pad mask shape[2] = 1 padding = torch.zeros(shape[:2], dtype=x.dtype, device=x.device) mask = torch.cat([mask, padding], dim=1) m = mask.unsqueeze(dim=-1) # needs to be done here as we still have our raw inputs position_ids = self.inputs_to_position_ids( inputs, mask=mask ) if not self.unified_position_ids else None classifier_levels = self.get_input( inputs, name="classifier_level" ) casual_levels = [ "AR:0:0", "stt", "len" ] # right now limit to new versions because I need to retrain the model for noncausal masks... is_causal = [ l in casual_levels for l in classifier_levels ] if self.noncausal_masks else None output = self._forward( inputs=x, mask=mask, state=state, is_causal=is_causal, position_ids=position_ids, output_attentions = output_attentions, output_hidden_states = output_hidden_states, layer_skip_lambda = layer_skip_lambda if self.layerskip and layer_skip_variables else None, ) logits = output.logits hidden_states = output.hidden_states # output projection layer # the very, very original implementation multiplied by the mask, but the mask only attends to padding, and the padding gets removed anyways if self.classifier is not None: logits = self.classifier(logits) # * m if output.hidden_states: for i, state in enumerate( hidden_states ): hidden_states[i] = self.classifier(hidden_states[i]) # * m # to-do: piece-wise classification, now that there's a head for text # although again, one single monolithic head would be preferable instead...... elif self.classifiers is not None: logits = self.classifiers(logits, levels = classifier_levels) # * m if hidden_states is not None: for i, state in enumerate( hidden_states ): hidden_states[i] = self.classifiers(hidden_states[i], levels = classifier_levels) # * m # Remove padding logits = [ hi[:li] for hi, li in zip(logits, map(len, x_list)) ] if hidden_states is not None: for i, state in enumerate( hidden_states ): hidden_states[i] = [ hi[:li] for hi, li in zip(hidden_states[i], map(len, x_list)) ] # compute loss if the target is given if not training: loss = None stats = None self.loss = None self.stats = None else: loss, stats = self.calc_loss( inputs=inputs, logits=logits, quant_levels=quant_levels ) # compute it as an aux-loss if self.layerskip: early_exit_loss = {} if not hasattr( self, "training_steps" ): self.training_steps = 0 for i, state in enumerate( hidden_states ): loss, stats = self.calc_loss( inputs=inputs, logits=hidden_states[i], quant_levels=quant_levels ) for k, v in loss.items(): K = f'early_exit.{k}' if K not in early_exit_loss: early_exit_loss[K] = [] early_exit_loss[K].append( v ) for k, v in early_exit_loss.items(): loss[k] = self.model.early_exit_loss( losses=v, t=self.training_steps ) # to-do: instead make the cirriculum rely on samples processed instead of steps self.training_steps += 1 # batch_size # include any additional losses (for example: MoE router) if output.loss is not None: loss["aux_loss"] = output.loss self.loss = loss self.stats = stats # rewrap, because we're modifying the logits here return Logits(logits, output.state, inputs, loss, output.attentions, hidden_states, exited_layer) def sample( self, logits: list[Tensor], # logit scores prev_list: list[Tensor] | None = None, # previous tokens quant_levels: list[int] | None = None, # to-do: derive this from the prev_list **sampling_kwargs, ): # yikes temperature = sampling_kwargs.get("temperature", 1.0) min_temperature = sampling_kwargs.get("min_temperature", -1.0) top_k = sampling_kwargs.get("top_k", -100) top_p = sampling_kwargs.get("top_p", 1.0) min_p = sampling_kwargs.get("min_p", 0.0) # repetition penalty parameters repetition_penalty = sampling_kwargs.get("repetition_penalty", 1.0) repetition_penalty_decay = sampling_kwargs.get("repetition_penalty_decay", 0.0) # length penalty parameters length_penalty = sampling_kwargs.get("length_penalty", 0.0) # beam sampling parameters beam_width = sampling_kwargs.get("beam_width", 0) # mirostat sampling parameters mirostat = sampling_kwargs.get("mirostat", None) # DRY sampling parameters dry_multiplier = sampling_kwargs.get("dry_multiplier", 0.0) dry_base = sampling_kwargs.get("dry_base", 1.75) dry_allowed_length = sampling_kwargs.get("dry_allowed_length", 2) # top_no = sampling_kwargs.get("top_no", 1.0) # attentions = sampling_kwargs.get("attentions", None) batch_size = len( logits ) if min_temperature < 0: min_temperature = temperature # pick last RVQ level if prev_list is not None: prev_list = [ prevs if prevs.dim() == 1 else prevs[:, -1] for prevs in prev_list ] scores = None entropy = None #logits = [ logit.to(device="cpu", dtype=logit.dtype if logit.dtype != torch.float16 else torch.float32) for logit in logits ] #logits = [ logit.to(device="cpu") for logit in logits ] # (AR) entropix sampling # we do it before everything to retain logits for the entire sequence (even though it's still better to pass only the last token) if attentions is not None and quant_levels is None: # move to CPU for speedups seq_lens = [ logit.shape[0] for logit in logits ] attentions = torch.stack(attentions, dim=1).to(device="cpu") # ( batch, layer, heads, seq_len, seq_len ) res = [ sample_entropix( logit[:seq_lens[batch], :], # ( seq_len, vocab ) attentions[batch, :, :, :seq_lens[batch], :seq_lens[batch]], # (layer, heads, seq_len, seq_len ) temperature, top_k, top_p, min_p, ) for batch, logit in enumerate(logits) ] if res: return Sampled([ r[0] for r in res ], logits, scores, [ r[1] for r in res ]) """ elif quant_levels is None: seq_lens = [ logit.shape[0] for logit in logits ] entropy = [ calculate_entropix_metrics( logit[:seq_lens[batch], :], # ( seq_len, vocab ) #attentions[batch, :, :, :seq_lens[batch], :seq_lens[batch]], # (layer, heads, seq_len, seq_len ) ) for batch, logit in enumerate(logits) ] """ # (NAR) return the entire generated response # Parallel decoding relies on the last N tokens in the logits, because each token predicts the next RVQ layer in the same place (forgetfully obviously) if quant_levels is not None: # and "nar" in self.capabilities: # for when I get around to coping about dropping the NAR entirely seq_lens = map(len, prev_list) logits = [ logit[-l:] for logit, l in zip(logits, seq_lens) ] # (AR chunkwise) return the last chunkwise piece elif self.causal: seq_lens = [ logit.shape[0] - self.causal_size for logit in logits ] logits = [ logit[-self.causal_size:] for logit in logits ] # (NAR) disable stop token if quant_levels is not None and "ar" in self.capabilities: logits = [ ban_tokens(logit, tokens=[self.stop_token]) for logit, l in zip( logits, map(len, prev_list) ) ] # (AR-len) disable extraneous tokens """ if quant_levels is None and "len" in self.capabilities: logits = [ ban_tokens(logit, tokens=[*range(11, logit.shape[-1])]) for logit, l in zip( logits, map(len, prev_list) ) ] """ # perform repetition penalizing if prev_list is not None and repetition_penalty != 1.0: logits = [ reptition_penalize(logit, previous=prevs, factor=repetition_penalty, decay=repetition_penalty_decay) for logit, prevs in zip( logits, prev_list ) ] # (AR) perform length penalizing if quant_levels is None and self.causal and prev_list is not None and length_penalty != 0.0: logits = [ length_penalize(logit, length=l + 1, factor=length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, prev_list) ) ] # perform min_p filtering of our logits if min_p > 0.0: logits = [ min_p_filtering(logit, min_p=min_p) for logit in logits ] # perform top_k/top_p filtering of our logits if top_k > 0 or top_p < 1.0: logits = [ top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p) for logit in logits ] # trigger dynamic temperature sampling if the minimum temperature is not the same as the sampling temperature # epsilon float comparison because I don't trust Python if abs(temperature - min_temperature) >= 0.001: logits = [ dynamic_temperature(logit, temperature=temperature, min_temperature=min_temperature) for logit in logits ] elif temperature > 0.0: logits = [ logit / temperature for logit in logits ] # do top-no logit processing if top_no > 0.0: logits = [ top_no_logits_processing(logit) for logit in logits ] # do DRY sampling if dry_multiplier > 0.0 and prev_list is not None: logits = [ dry_sampling(logit, previous=prevs, factor=dry_multiplier, base=dry_base, allowed_length=dry_allowed_length) for logit, prevs in zip( logits, prev_list ) ] # do mirostat sampling # currently incompatible with beam searching with the way the two are implemented, perhaps a night of brain bashing can make the two work if mirostat is not None: # mirostat sampling scores = [ mirostat_sample(logit, state=state) for logit, state in zip(logits, mirostat) ] res = [ state["token"] for state in scores ] # do beam search (naive implementation) # picks the top-k across all batches, and re-batches those resultant tokens # returns the logit scores as well to be P-concatted with the previous scores # to-do: not naively implement beam searching elif beam_width > 1: candidates = top_k_logits_list( logits, beam_width ) res = [ torch.tensor(token, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ] scores = [ logits[batch].flatten()[token] for batch, token in candidates ] # basic sampling else: # argmax instead if temperature <= 0.0: res = [ logit.argmax(dim=-1) for logit in logits ] else: res = [ Categorical(logits=logit).sample() for logit in logits ] # calculate token probabilities scores = [ [ F.softmax(logit[i, :], dim=-1)[token].item() for i, token in enumerate(tokens) ] for logit, tokens in zip(logits, res) ] return Sampled(res, logits, scores, entropy)