vall-e/vall_e/inference.py

358 lines
11 KiB
Python
Executable File

import torch
import torchaudio
import soundfile
import time
import logging
_logger = logging.getLogger(__name__)
from torch import Tensor
from einops import rearrange
from pathlib import Path
from .emb import g2p, qnt
from .emb.qnt import trim, trim_random, unload_model, repeat_extend_audio
from .utils import to_device, set_seed, wrapper as ml
from .config import cfg, Config
from .models import get_models
from .models.lora import enable_lora
from .engines import load_engines, deepspeed_available
from .data import get_phone_symmap, get_lang_symmap, _load_quants, _cleanup_phones, tokenize
from .models import download_model, DEFAULT_MODEL_PATH
if deepspeed_available:
import deepspeed
class TTS():
def __init__( self, config=None, lora=None, device=None, amp=None, dtype=None, attention=None ):
self.loading = True
# yes I can just grab **kwargs and forward them here
self.load_config( config=config, lora=lora, device=device, amp=amp, dtype=dtype, attention=attention )
self.load_model()
self.loading = False
def load_config( self, config=None, lora=None, device=None, amp=None, dtype=None, attention=None ):
if not config:
download_model()
config = DEFAULT_MODEL_PATH
if config.suffix == ".yaml":
_logger.info(f"Loading YAML: {config}")
cfg.load_yaml( config )
elif config.suffix == ".sft":
_logger.info(f"Loading model: {config}")
cfg.load_model( config, lora )
else:
raise Exception(f"Unknown config passed: {config}")
try:
cfg.format( training=False )
cfg.dataset.use_hdf5 = False # could use cfg.load_hdf5(), but why would it ever need to be loaded for inferencing
except Exception as e:
raise e # throw an error because I'm tired of silent errors messing things up for me
if amp is None:
amp = cfg.inference.amp
if dtype is None or dtype == "auto":
dtype = cfg.inference.weight_dtype
if device is None:
device = cfg.device
cfg.device = device
cfg.mode = "inferencing"
cfg.trainer.backend = cfg.inference.backend
cfg.trainer.weight_dtype = dtype
cfg.inference.weight_dtype = dtype
self.device = device
self.dtype = cfg.inference.dtype
self.amp = amp
self.model_kwargs = {}
if attention:
self.model_kwargs["attention"] = attention
def load_model( self ):
load_engines.cache_clear()
unload_model()
self.engines = load_engines(training=False, **self.model_kwargs)
for name, engine in self.engines.items():
if self.dtype != torch.int8:
engine.to(self.device, dtype=self.dtype if not self.amp else torch.float32)
self.engines.eval()
self.symmap = get_phone_symmap()
_logger.info("Loaded model")
def enable_lora( self, enabled=True ):
for name, engine in self.engines.items():
enable_lora( engine.module, mode = enabled )
def disable_lora( self ):
return self.enable_lora( enabled=False )
def encode_text( self, text, language="en" ):
# already a tensor, return it
if isinstance( text, Tensor ):
return text
content = g2p.encode(text, language=language)
tokens = tokenize( content )
return torch.tensor( tokens )
def encode_lang( self, language ):
symmap = get_lang_symmap()
id = 0
if language in symmap:
id = symmap[language]
return torch.tensor([ id ])
# to-do: trim before quantizing, instead of after
def encode_audio( self, paths, trim_length=5.0 ):
# already a tensor, return it
if isinstance( paths, Tensor ):
return paths
# split string into paths
if isinstance( paths, str ):
paths = [ Path(p) for p in paths.split(";") ]
# merge inputs
proms = []
for path in paths:
prom = qnt.encode_from_file(path)
if hasattr( prom, "codes" ):
prom = prom.codes
prom = prom[0][:, :].t().to(torch.int16)
proms.append( prom )
res = torch.cat(proms)
if trim_length:
res = repeat_extend_audio( res, int( cfg.dataset.frames_per_second * trim_length ) )
#res = trim( res, int( cfg.dataset.frames_per_second * trim_length ) )
return res
@torch.inference_mode()
def text_embedding( self, input, prom=False ):
model = None
for name, engine in self.engines.items():
model = engine.module
break
if isinstance( input, str ):
input = cfg.tokenizer.encode(input)
if isinstance( input, list ):
input = torch.tensor( input, dtype=torch.uint8, device=self.device )
return model.text_emb( input )
@torch.inference_mode()
def audio_embedding( self, input, prom=False ):
model = None
for name, engine in self.engines.items():
model = engine.module
break
# im really not sure which way is the better way, since the proms_emb and resps_emb have different properties.......
if prom:
return model.proms_emb(
input,
quant_level=input.shape[-1] - 1,
offset=0,
sums=True,
)
return sum([ model.resps_emb(
input[:, :l+1],
offset = 0 if l == 0 else 1, # or maybe set to 1
quant_level = l,
sums = False
) for l in range( input.shape[-1] - 1 ) ])
@torch.inference_mode()
def inference(
self,
text,
references,
language="en",
task="tts",
#
max_ar_steps=6 * cfg.dataset.frames_per_second,
max_nar_levels=7,
#
input_prompt_length=0.0,
input_prompt_prefix=False,
prefix_silence=0.0,
#
ar_temp=0.0,
nar_temp=0.0,
#
min_ar_temp=0.0,
min_nar_temp=0.0,
#
top_p=1.0,
top_k=0,
min_p=0.0,
#
repetition_penalty=1.0,
repetition_penalty_decay=0.0,
length_penalty=0.0,
#
beam_width=0,
#
mirostat_tau=0,
mirostat_eta=0.1,
#
dry_multiplier=0.0,
dry_base=1.75,
dry_allowed_length=2,
#
entropix_sampling=False,
#
seed = None,
out_path=None,
tqdm=True,
use_lora=None,
):
lines = text.split("\n")
wavs = []
sr = None
model_ar = None
model_len = None
model_nar = None
for name, engine in self.engines.items():
if "ar" in engine.hyper_config.capabilities:
model_ar = engine.module
if "len" in engine.hyper_config.capabilities:
model_len = engine.module
if "nar" in engine.hyper_config.capabilities:
model_nar = engine.module
seed = set_seed(seed)
if task == "stt":
resp = self.encode_audio( references )
lang = self.encode_lang( language )
resp = to_device(resp, device=self.device, dtype=torch.int16)
lang = to_device(lang, device=self.device, dtype=torch.uint8)
with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp):
if model_ar is not None:
text_list = model_ar(
text_list=None, proms_list=[resp], lang_list=[lang], resps_list=[resp], max_steps=max_ar_steps,
sampling_temperature=ar_temp,
sampling_min_temperature=min_ar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
sampling_length_penalty=length_penalty,
sampling_beam_width=beam_width,
sampling_mirostat_tau=mirostat_tau,
sampling_mirostat_eta=mirostat_eta,
sampling_dry_multiplier=dry_multiplier,
sampling_dry_base=dry_base,
sampling_dry_allowed_length=dry_allowed_length,
sampling_entropix=entropix_sampling,
disable_tqdm=not tqdm,
use_lora=use_lora,
)
else:
raise Exception("!")
text_list = [ cfg.tokenizer.decode( text ).replace(" ", "_").replace(" ", "").replace("_", " ") for text in text_list ]
return text_list[0]
# validate settings here
if not references and ar_temp < 0.5:
_logger.warning(f'Audio-promptless inferencing fails with low AR temperatures.')
for line in lines:
if out_path is None:
output_dir = Path("./data/results/")
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=True)
out_path = output_dir / f"{time.time()}.wav"
prom = self.encode_audio( references, trim_length=input_prompt_length ) if references else None
phns = self.encode_text( line, language=language )
lang = self.encode_lang( language )
prom = to_device(prom, device=self.device, dtype=torch.int16)
phns = to_device(phns, device=self.device, dtype=torch.uint8 if len(self.symmap) < 256 else torch.int16)
lang = to_device(lang, device=self.device, dtype=torch.uint8)
# to-do: add in case for experimental.hf model
with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp):
if model_ar is not None:
resps_list = model_ar(
text_list=[phns], proms_list=[prom], lang_list=[lang], max_steps=max_ar_steps,
input_prompt_prefix=input_prompt_prefix,
prefix_silence=prefix_silence,
sampling_temperature=ar_temp,
sampling_min_temperature=min_ar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
sampling_length_penalty=length_penalty,
sampling_beam_width=beam_width,
sampling_mirostat_tau=mirostat_tau,
sampling_mirostat_eta=mirostat_eta,
sampling_dry_multiplier=dry_multiplier,
sampling_dry_base=dry_base,
sampling_dry_allowed_length=dry_allowed_length,
sampling_entropix=entropix_sampling,
disable_tqdm=not tqdm,
use_lora=use_lora,
)
resps_list = model_nar(
text_list=[phns], proms_list=[prom], lang_list=[lang], resps_list=resps_list,
input_prompt_prefix=input_prompt_prefix,
max_levels=max_nar_levels,
sampling_temperature=nar_temp,
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
disable_tqdm=not tqdm,
use_lora=use_lora,
)
elif model_len is not None:
len_list = model_len( text_list=[phns], proms_list=[prom], max_steps=10, disable_tqdm=not tqdm ) # don't need more than that
resps_list = model_nar( text_list=[phns], proms_list=[prom], len_list=len_list,
max_levels=max_nar_levels,
sampling_temperature=nar_temp,
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
disable_tqdm=not tqdm,
use_lora=use_lora,
)
else:
raise Exception("!")
wav, sr = qnt.decode_to_file(resps_list[0], out_path, device=self.device)
wavs.append(wav)
return (torch.concat(wavs, dim=-1), sr)