vall-e/vall_e/export.py
2024-12-22 15:05:45 -06:00

462 lines
16 KiB
Python
Executable File

import argparse
import torch
import torch.nn
from .data import get_phone_symmap
from .engines import load_engines
from .config import cfg
from .models.lora import lora_get_state_dict
from .utils.io import torch_save, torch_load, json_read, json_write, Path
# stitches embeddings into one embedding & classifier => lm_head, for use in a HF compatible weight
# *will* require retraining because the classifier is in one contiguous space, and proms are NOT summed
@torch.no_grad()
def convert_to_hf_llama( state_dict, config = None, save_path = None ):
n_text_tokens, model_dim = state_dict['module']['text_emb.weight'].shape
n_audio_tokens = state_dict['module']['proms_emb.embeddings.0.weight'].shape[0]
n_resp_levels = state_dict['module']['rvq_l_emb.weight'].shape[0]
n_len_tokens = 11
n_lang_tokens = state_dict['module']['langs_emb.weight'].shape[0]
n_task_tokens = state_dict['module']['tasks_emb.weight'].shape[0]
classifier_bias = "classifiers.proj.0.bias" in state_dict['module'] # cfg.model.experimental.classifiers_bias
split_classifiers = "classifiers.proj.0.weight" in state_dict['module'] # cfg.model.experimental.split_classifiers
# the new tokenizer to use
tokenizer = {}
tokenizer_vocab = {}
tokenizer_path = cfg.rel_path / cfg.tokenizer_path
if not tokenizer_path.exists():
tokenizer_path = Path("./data/") / cfg.tokenizer_path
if tokenizer_path.exists():
tokenizer = json_read( tokenizer_path )
else:
tokenizer = {
"model": {
"vocab": get_phone_symmap()
}
}
lang_map = [
"en",
"ja",
"de",
"fr",
"zh",
"ko",
]
task_map = [
"tts",
"tts-c",
"ns",
"sr",
"tse",
"soe",
"mask",
"eoe",
"stt",
]
tone_map = [
"neutral",
]
# (start, end), embedding, classifier, token_format
mapping = [
[(0, 0), "text_emb.weight", "classifiers.proj.9.weight", None],
[(0, 0), "rvq_l_emb.weight", None, "<|RVQ:{l}|>"],
[(0, 0), "langs_emb.weight", None, "<|lang:{lang}|>"],
[(0, 0), "tasks_emb.weight", None, "<|task:{task}|>"],
[(0, 0), "len_emb.weight", "classifiers.proj.10.weight", "<|len:{id}|>"],
[(0, 0), "tones_emb.weight", None, "<|tone:{tone}|>"],
[(0, 0), "sep", None, "<|sep|>"],
[(0, 0), "proms_emb.embeddings.0.weight", None, "<|P|0|{id}|>"],
[(0, 0), "proms_emb.embeddings.1.weight", None, "<|P|1|{id}|>"],
[(0, 0), "proms_emb.embeddings.2.weight", None, "<|P|2|{id}|>"],
[(0, 0), "proms_emb.embeddings.3.weight", None, "<|P|3|{id}|>"],
[(0, 0), "proms_emb.embeddings.4.weight", None, "<|P|4|{id}|>"],
[(0, 0), "proms_emb.embeddings.5.weight", None, "<|P|5|{id}|>"],
[(0, 0), "proms_emb.embeddings.6.weight", None, "<|P|6|{id}|>"],
[(0, 0), "proms_emb.embeddings.7.weight", None, "<|P|7|{id}|>"],
[(0, 0), "resps_emb.embeddings.0.weight", "classifiers.proj.0.weight", "<|R|AR|0:0|{id}|>"],
[(0, 0), "resps_emb.embeddings.1.weight", "classifiers.proj.1.weight", "<|R|NAR|0:1|{id}|>"],
[(0, 0), "resps_emb.embeddings.2.weight", "classifiers.proj.2.weight", "<|R|NAR|1:2|{id}|>"],
[(0, 0), "resps_emb.embeddings.3.weight", "classifiers.proj.3.weight", "<|R|NAR|2:3|{id}|>"],
[(0, 0), "resps_emb.embeddings.4.weight", "classifiers.proj.4.weight", "<|R|NAR|3:4|{id}|>"],
[(0, 0), "resps_emb.embeddings.5.weight", "classifiers.proj.5.weight", "<|R|NAR|4:5|{id}|>"],
[(0, 0), "resps_emb.embeddings.6.weight", "classifiers.proj.6.weight", "<|R|NAR|5:6|{id}|>"],
[(0, 0), "resps_emb.embeddings.7.weight", "classifiers.proj.7.weight", "<|R|NAR|6:7|{id}|>"],
[(0, 0), "resps_emb.embeddings.8.weight", "classifiers.proj.8.weight", "<|R|NAR|0:0|{id}|>"],
]
n_tokens = 0
# to-do: figure out discrepancy
for i, m in enumerate( mapping ):
k_embd = mapping[i][1]
embds = state_dict['module'][k_embd] if k_embd in state_dict['module'] else None
n_tokens += 1 if embds.dim() == 1 else embds.shape[0]
embedding = torch.nn.Embedding( n_tokens, model_dim )
classifier = torch.nn.Linear( model_dim, n_tokens, bias=classifier_bias )
if not split_classifiers:
classifier.weight[:] = state_dict['module']['classifier.weight'][:]
# update ranges
start = 0
for i, m in enumerate( mapping ):
# get previous start
k_embd = mapping[i][1]
k_head = mapping[i][2]
token_format = mapping[i][3]
embds = state_dict['module'][k_embd] if k_embd in state_dict['module'] else None
head = state_dict['module'][k_head] if k_head in state_dict['module'] else None
# expand if 1D
if embds.dim() == 1:
embds = embds.unsqueeze(0)
tokens = embds.shape[0]
if embds is not None:
embedding.weight[start:start+tokens] = embds
if split_classifiers and head is not None:
classifier.weight[start:start+head.shape[0]] = head
if token_format is not None:
for idx in range(0, tokens):
# RVQ level
if "{l}" in token_format:
token = token_format.format(l=idx)
elif "{lang}" in token_format:
token = token_format.format(lang=lang_map[idx])
elif "{task}" in token_format:
token = token_format.format(task=task_map[idx])
elif "{tone}" in token_format:
token = token_format.format(tone=tone_map[idx])
elif "{id}" in token_format:
token = token_format.format(id=idx)
else:
token = token_format
tokenizer_vocab[token] = idx + start
end = start + tokens
mapping[i][0] = (start, end)
start = end
model_dict = {}
# filter out the underlying model weights and extract them
for k in state_dict['module'].keys():
if not k.startswith('model.'):
continue
model_dict[k] = state_dict['module'][k].clone()
embedding_dict = embedding.state_dict()
classifier_dict = classifier.state_dict()
model_dict['model.embed_tokens.weight'] = embedding_dict['weight']
model_dict['lm_head.weight'] = classifier_dict['weight']
if classifier_bias:
model_dict['lm_head.bias'] = classifier_dict['bias']
# write files in an HF compatible way
out_dir = cfg.rel_path / "hf"
out_dir.mkdir(parents=True, exist_ok=True)
# write weights
torch_save( { "module": model_dict, "format": "pt" }, out_dir / "model.safetensors" )
# write tokenizer.json
tokenizer['model']['vocab'] |= tokenizer_vocab
json_write(tokenizer, out_dir / "tokenizer.json", pretty=True)
# write tokenizer_config.json
json_write({
"added_tokens": tokenizer['added_tokens'],
"bos_token": "<bos>",
"eos_token": "</eos>",
"clean_up_tokenization_spaces": True,
"model_input_names": [
"input_ids",
"attention_mask"
],
"tokenizer_class": "PreTrainedTokenizerFast"
}, out_dir / "tokenizer_config.json", pretty=True)
# write config.json
json_write({
"architectures": [
"LLaMAForCausalLM"
],
"attention_bias": False,
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_size": model_dim,
"initializer_range": 0.02,
"intermediate_size": model_dim * 4,
"max_position_embeddings": 75 * 60 * 5,
"model_type": "llama",
"num_attention_heads": 16,
"num_hidden_layers": 12,
"num_key_value_heads": 16,
"pretraining_tp": 1,
"rms_norm_eps": 1e-06,
"rope_scaling": None,
"rope_theta": 10000.0,
"tie_word_embeddings": False,
"torch_dtype": "bfloat16",
"transformers_version": "4.40.0",
"use_cache": False,
"vocab_size": n_tokens
}, out_dir / "config.json", pretty=True )
return state_dict
# stitches embeddings into one embedding & classifier => lm_head, for use in a HF compatible weight
# *will* require retraining because the classifier is in one contiguous space, and proms are NOT summed
@torch.no_grad()
def convert_to_hf_custom( state_dict, config = None, save_path = None ):
n_text_tokens, model_dim = state_dict['module']['text_emb.weight'].shape
n_audio_tokens = state_dict['module']['proms_emb.embeddings.0.weight'].shape[0]
n_resp_levels = state_dict['module']['rvq_l_emb.weight'].shape[0]
n_len_tokens = 11
n_lang_tokens = state_dict['module']['langs_emb.weight'].shape[0]
n_task_tokens = state_dict['module']['tasks_emb.weight'].shape[0]
classifier_bias = "classifiers.proj.0.bias" in state_dict['module'] # cfg.model.experimental.classifiers_bias
split_classifiers = "classifiers.proj.0.weight" in state_dict['module'] # cfg.model.experimental.split_classifiers
# the new tokenizer to use
tokenizer = {}
tokenizer_vocab = {}
tokenizer_path = cfg.rel_path / cfg.tokenizer_path
if not tokenizer_path.exists():
tokenizer_path = Path("./data/") / cfg.tokenizer_path
if tokenizer_path.exists():
tokenizer = json_read( tokenizer_path )
else:
tokenizer = {
"model": {
"vocab": get_phone_symmap()
}
}
lang_map = [
"en",
"ja",
"de",
"fr",
"zh",
"ko",
]
task_map = [
"tts",
"tts-c",
"ns",
"sr",
"tse",
"soe",
"mask",
"eoe",
"stt",
]
model_dict = {}
# filter out the underlying model weights and extract them
for k in state_dict['module'].keys():
if not k.startswith('model.'):
continue
model_dict[k] = state_dict['module'][k].clone()
# cringe
for l in range(11):
model_dict[f'classifiers.{l}.weight'] = state_dict['module'][f'classifiers.proj.{l}.weight']
for l in range(8):
model_dict[f"embeddings.proms.{l}.weight"] = state_dict['module'][f"proms_emb.embeddings.{l}.weight"]
for l in range(9):
model_dict[f"embeddings.resps.{l}.weight"] = state_dict['module'][f"resps_emb.embeddings.{l}.weight"]
model_dict["embeddings.aux.0.weight"] = state_dict['module']["text_emb.weight"]
model_dict["embeddings.aux.1.weight"] = state_dict['module']["rvq_l_emb.weight"]
model_dict["embeddings.aux.2.weight"] = state_dict['module']["langs_emb.weight"]
model_dict["embeddings.aux.3.weight"] = state_dict['module']["tasks_emb.weight"]
model_dict["embeddings.aux.4.weight"] = state_dict['module']["len_emb.weight"]
model_dict["embeddings.aux.5.weight"] = state_dict['module']["tones_emb.weight"]
model_dict["embeddings.aux.6.weight"] = state_dict['module']["sep"].unsqueeze(0)
# write files in an HF compatible way
out_dir = cfg.rel_path / "hf"
out_dir.mkdir(parents=True, exist_ok=True)
# write weights
torch_save( { "module": model_dict, "format": "pt" }, out_dir / "model.safetensors" )
# write tokenizer.json
tokenizer['model']['vocab'] |= tokenizer_vocab
json_write(tokenizer, out_dir / "tokenizer.json", pretty=True)
# write tokenizer_config.json
json_write({
"added_tokens": tokenizer['added_tokens'],
"bos_token": "<bos>",
"eos_token": "</eos>",
"clean_up_tokenization_spaces": True,
"model_input_names": [
"input_ids",
"attention_mask"
],
"tokenizer_class": "PreTrainedTokenizerFast"
}, out_dir / "tokenizer_config.json", pretty=True)
# write config.json
json_write({
"architectures": [
"ValleLM"
],
"attention_bias": False,
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_size": model_dim,
"initializer_range": 0.02,
"intermediate_size": model_dim * 4,
"max_position_embeddings": 75 * 60 * 5,
"model_type": "llama",
"num_attention_heads": 16,
"num_hidden_layers": 12,
"num_key_value_heads": 16,
"pretraining_tp": 1,
"rms_norm_eps": 1e-06,
"rope_scaling": None,
"rope_theta": 10000.0,
"tie_word_embeddings": False,
"torch_dtype": "bfloat16",
"transformers_version": "4.40.0",
"use_cache": False,
"vocab_size": 256
}, out_dir / "config.json", pretty=True )
return state_dict
# yanks a LoRA from the training checkpoint
def extract_lora( state_dict, config = None, save_path = None, dtype = None ):
if dtype is None:
dtype = cfg.inference.dtype
format = save_path.suffix[1:]
lora = state_dict["lora"] if "lora" in state_dict else None
# should always be included, but just in case
if lora is None and "module" in state_dict:
lora, module = lora_get_state_dict( state_dict["module"], split = True )
state_dict["module"] = module
if "lora" in state_dict:
state_dict["lora"] = None
# should raise an exception since there's nothing to extract, or at least a warning
if not lora:
return state_dict
# save lora specifically
# should probably export other attributes, similar to what SD LoRAs do
save_path = save_path.parent / f"lora.{format}"
torch_save( {
"module": lora,
"config": cfg.lora.__dict__ if cfg.lora is not None else None,
}, save_path )
return state_dict
# copies a single classifier head into multiple classifier heads per RVQ level
def split_classifier_heads( state_dict, config = cfg.model, save_path = None, dtype = None):
levels = config.max_levels
if "classifier.weight" not in state_dict['module']:
return state_dict
# copy to new AudioClassifier
for i in range(levels):
tokens = 1025 if i == 0 else 1024
# trim per RVQ level (since level 0 has a stop token)
state_dict['module'][f'classifiers.proj.{i}.weight'] = state_dict['module']['classifier.weight'][:tokens, :].clone()
state_dict['module'][f'classifiers.proj.{i}.bias'] = state_dict['module']['classifier.bias'][:tokens].clone()
# delete old weights
del state_dict['module']['classifier.weight']
del state_dict['module']['classifier.bias']
return state_dict
# converts a normal LLaMA model to a MoE model, as best as I can
def moe_ify( state_dict, config = cfg.model, save_path = None, dtype = None ):
# to-do: find a good way to pass in requested experts
experts = 8
for layer in range( config.layers ):
#state_dict[f'model.layers.{layer}.block_sparse_moe.gate.weight'] = torch.randn((config.dim, experts))
for expert in range( experts ):
state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w1.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.up_proj.weight'].clone()
state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w2.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.down_proj.weight'].clone()
state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w3.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.gate_proj.weight'].clone()
del state_dict['module'][f'model.layers.{layer}.mlp.up_proj.weight']
del state_dict['module'][f'model.layers.{layer}.mlp.down_proj.weight']
del state_dict['module'][f'model.layers.{layer}.mlp.gate_proj.weight']
return state_dict
def main():
parser = argparse.ArgumentParser("Save trained model to path.")
parser.add_argument("--module-only", action='store_true')
parser.add_argument("--hf", action='store_true', default=None) # convert to HF-style
parser.add_argument("--hf-llama", action='store_true', default=None) # convert to HF-style llama model
parser.add_argument("--export-lora", action='store_true', default=None) # exports LoRA
parser.add_argument("--split-classifiers", action='store_true', default=None) # splits classifier heads
parser.add_argument("--moe-ify", action='store_true', default=None) # splits classifier heads
parser.add_argument("--experts", type=int, default=8) # set target dtype to export to
parser.add_argument("--dtype", type=str, default="auto") # set target dtype to export to
parser.add_argument("--format", type=str, default=cfg.weights_format) # set target format to export weights under
args, unknown = parser.parse_known_args()
if args.format.lower() not in ["sft", "safetensors", "pt", "pth"]:
raise Exception(f"Unknown requested format: {args.format}")
if args.module_only:
cfg.trainer.load_module_only = True
if args.hf and args.export_lora:
raise Exception("Requesting more than one callback")
if args.dtype != "auto":
cfg.trainer.weight_dtype = args.dtype
# necessary to ensure we are actually exporting the weights right
cfg.inference.backend = cfg.trainer.backend
engines = load_engines(training=False) # to ignore loading optimizer state
callback = None
if args.hf_llama:
callback = convert_to_hf_llama
elif args.hf:
callback = convert_to_hf_custom
elif args.export_lora:
callback = extract_lora
elif args.split_classifiers:
callback = split_classifier_heads
elif args.moe_ify:
callback = moe_ify
# set it here after the model loads to not influence which model loads
cfg.model.experts = args.experts
for name, engine in engines.items():
engine.module.config.experts = args.experts
engine.hyper_config.experts = args.experts
engines.export(userdata={"symmap": get_phone_symmap()}, callback=callback, format=args.format)
if __name__ == "__main__":
main()