vall-e/scripts/process_emilia.py

176 lines
5.5 KiB
Python

"""
# Handles processing audio provided through --input-audio of adequately annotated transcriptions provided through --input-metadata (through transcribe.py)
# Outputs NumPy objects containing quantized audio and adequate metadata for use of loading in the trainer through --output-dataset
"""
import os
import json
import argparse
import torch
import torchaudio
import numpy as np
from tqdm.auto import tqdm
from pathlib import Path
from vall_e.config import cfg
from vall_e.emb.g2p import encode as phonemize
from vall_e.emb.qnt import encode as quantize, _replace_file_extension, convert_audio
from vall_e.emb.process import pad, load_audio, process_items, process_jobs
def process(
audio_backend="encodec",
input_audio="Emilia",
output_dataset="training",
raise_exceptions=False,
stride=0,
stride_offset=0,
slice="auto",
batch_size=1,
low_memory=False,
device="cuda",
dtype="float16",
amp=False,
):
# prepare from args
cfg.device = device
cfg.set_audio_backend(audio_backend)
audio_extension = cfg.audio_backend_extension
cfg.inference.weight_dtype = dtype # "bfloat16"
cfg.inference.amp = amp # False
dtype = cfg.inference.dtype if not amp else None
output_dataset = f"{output_dataset}/{'2' if cfg.sample_rate == 24_000 else '4'}{'8' if cfg.sample_rate == 48_000 else '4'}KHz-{cfg.audio_backend}" # "training"
language_map = {} # k = group, v = language
ignore_groups = [] # skip these groups
ignore_speakers = [] # skip these speakers
only_groups = [] # only process these groups
only_speakers = [] # only process these speakers
always_slice_groups = [] # always slice from this group
missing = {
"transcription": [],
"audio": []
}
dataset = []
# Layout: ./Emilia/JA/JA-B000000/JA_B00000_S00000_W000000.{json|mp3}
for language in sorted(os.listdir(f'./{input_audio}/')):
if not os.path.isdir(f'./{input_audio}/{language}/'):
print("Is not dir:", f'./{input_audio}/{language}/')
continue
if language in ignore_groups:
continue
if only_groups and language not in only_groups:
continue
group_name = "Emilia"
for speaker_group in tqdm(process_items(os.listdir(f'./{input_audio}/{language}/'), stride=stride, stride_offset=stride_offset), desc=f"Processing speaker in {language}"):
if not os.path.isdir(f'./{input_audio}/{language}/{speaker_group}'):
print("Is not dir:", f'./{input_audio}/{language}/{speaker_group}')
continue
if speaker_group in ignore_speakers:
continue
if only_speakers and speaker_group not in only_speakers:
continue
if f'{group_name}/{speaker_group}' not in dataset:
dataset.append(f'{group_name}/{speaker_group}')
txts = []
wavs = []
for filename in os.listdir(f'./{input_audio}/{language}/{speaker_group}'):
if ".mp3" not in filename:
continue
inpath = Path(f'./{input_audio}/{language}/{speaker_group}/{filename}')
jsonpath = _replace_file_extension(inpath, ".json")
if not inpath.exists() or not jsonpath.exists():
missing["audio"].append(str(inpath))
continue
extension = os.path.splitext(filename)[-1][1:]
fname = filename.replace(f'.{extension}', "")
waveform, sample_rate = None, None
metadata = json.load(open(jsonpath, "r", encoding="utf-8"))
if "text" not in metadata:
continue
speaker_id = metadata["speaker"]
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{fname}.{extension}').with_suffix(audio_extension)
os.makedirs(f'./{output_dataset}/{group_name}/{speaker_id}/', exist_ok=True)
if _replace_file_extension(outpath, audio_extension).exists():
continue
text = metadata["text"]
if waveform is None:
waveform, sample_rate = load_audio(inpath)
jobs.append(( outpath, waveform, sample_rate, text, language.lower() ))
# processes audio files one at a time
process_jobs( jobs, device=device, speaker_id=f'{speaker_id}/{filename}', raise_exceptions=raise_exceptions, batch_size=batch_size, dtype=dtype if not amp else None )
jobs = []
open(f"./{output_dataset}/missing.json", 'w', encoding='utf-8').write(json.dumps(missing))
open(f"./{output_dataset}/dataset.json", 'w', encoding='utf-8').write(json.dumps(dataset))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--audio-backend", type=str, default="encodec")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--amp", action="store_true")
parser.add_argument("--input-audio", type=str, default="Emilia")
parser.add_argument("--output-dataset", type=str, default="training/dataset")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--raise-exceptions", action="store_true")
parser.add_argument("--stride", type=int, default=0)
parser.add_argument("--stride-offset", type=int, default=0)
parser.add_argument("--slice", type=str, default="auto")
parser.add_argument("--low-memory", action="store_true")
parser.add_argument("--batch-size", type=int, default=0)
args = parser.parse_args()
# do some assumption magic
# to-do: find a nice way to spawn multiple processes where tqdm plays nicely
if args.device.isnumeric():
args.stride = torch.cuda.device_count()
args.stride_offset = int(args.device)
args.device = f'cuda:{args.device}'
process(
audio_backend=args.audio_backend,
input_audio=args.input_audio,
output_dataset=args.output_dataset,
raise_exceptions=args.raise_exceptions,
stride=args.stride,
stride_offset=args.stride_offset,
slice=args.slice,
batch_size=args.batch_size,
low_memory=args.low_memory,
device=args.device,
dtype=args.dtype,
amp=args.amp,
)
if __name__ == "__main__":
main()