243 lines
7.3 KiB
Python
243 lines
7.3 KiB
Python
"""
|
|
# Handles processing audio provided through --input-audio of adequately annotated transcriptions provided through --input-metadata (through transcribe.py)
|
|
# Outputs NumPy objects containing quantized audio and adequate metadata for use of loading in the trainer through --output-dataset
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
import argparse
|
|
import torch
|
|
import torchaudio
|
|
import numpy as np
|
|
|
|
from tqdm.auto import tqdm
|
|
from pathlib import Path
|
|
|
|
from vall_e.config import cfg
|
|
|
|
from vall_e.emb.g2p import encode as phonemize
|
|
from vall_e.emb.qnt import encode as quantize, _replace_file_extension, convert_audio
|
|
|
|
def pad(num, zeroes):
|
|
return str(num).zfill(zeroes+1)
|
|
|
|
def process_items( items, stride=0, stride_offset=0 ):
|
|
items = sorted( items )
|
|
return items if stride == 0 else [ item for i, item in enumerate( items ) if (i+stride_offset) % stride == 0 ]
|
|
|
|
def load_audio( path, device="cuda" ):
|
|
waveform, sample_rate = torchaudio.load(path)
|
|
if waveform.shape[0] > 1:
|
|
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
|
waveform = convert_audio(waveform, sample_rate, cfg.sample_rate, 1)
|
|
return waveform.to(device=device), cfg.sample_rate
|
|
|
|
def process(
|
|
audio_backend="encodec",
|
|
input_audio="Emilia",
|
|
output_dataset="training",
|
|
raise_exceptions=False,
|
|
stride=0,
|
|
stride_offset=0,
|
|
slice="auto",
|
|
|
|
device="cuda",
|
|
dtype="float16",
|
|
amp=False,
|
|
):
|
|
# encodec / vocos
|
|
|
|
if audio_backend in ["encodec", "vocos"]:
|
|
audio_extension = ".enc"
|
|
cfg.sample_rate = 24_000
|
|
cfg.model.resp_levels = 8
|
|
elif audio_backend == "dac":
|
|
audio_extension = ".dac"
|
|
cfg.sample_rate = 44_100
|
|
cfg.model.resp_levels = 9
|
|
elif cfg.audio_backend == "audiodec":
|
|
sample_rate = 48_000
|
|
audio_extension = ".dec"
|
|
cfg.model.resp_levels = 8 # ?
|
|
else:
|
|
raise Exception(f"Unknown audio backend: {audio_backend}")
|
|
|
|
# prepare from args
|
|
cfg.audio_backend = audio_backend # "encodec"
|
|
cfg.inference.weight_dtype = dtype # "bfloat16"
|
|
cfg.inference.amp = amp # False
|
|
|
|
|
|
output_dataset = f"{output_dataset}/{'2' if cfg.sample_rate == 24_000 else '4'}{'8' if cfg.sample_rate == 48_000 else '4'}KHz-{cfg.audio_backend}" # "training"
|
|
|
|
language_map = {} # k = group, v = language
|
|
|
|
ignore_groups = [] # skip these groups
|
|
ignore_speakers = [] # skip these speakers
|
|
|
|
only_groups = [] # only process these groups
|
|
only_speakers = [] # only process these speakers
|
|
|
|
always_slice_groups = [] # always slice from this group
|
|
|
|
missing = {
|
|
"transcription": [],
|
|
"audio": []
|
|
}
|
|
dataset = []
|
|
|
|
# Layout: ./Emilia/JA/JA-B000000/JA_B00000_S00000_W000000.{json|mp3}
|
|
for language in sorted(os.listdir(f'./{input_audio}/')):
|
|
if not os.path.isdir(f'./{input_audio}/{language}/'):
|
|
print("Is not dir:", f'./{input_audio}/{language}/')
|
|
continue
|
|
|
|
if language in ignore_groups:
|
|
continue
|
|
|
|
if only_groups and language not in only_groups:
|
|
continue
|
|
|
|
group_name = "Emilia"
|
|
|
|
for speaker_group in tqdm(process_items(os.listdir(f'./{input_audio}/{language}/'), stride=stride, stride_offset=stride_offset), desc=f"Processing speaker in {language}"):
|
|
if not os.path.isdir(f'./{input_audio}/{language}/{speaker_group}'):
|
|
print("Is not dir:", f'./{input_audio}/{language}/{speaker_group}')
|
|
continue
|
|
|
|
if speaker_group in ignore_speakers:
|
|
continue
|
|
if only_speakers and speaker_group not in only_speakers:
|
|
continue
|
|
|
|
os.makedirs(f'./{output_dataset}/{group_name}/{speaker_group}/', exist_ok=True)
|
|
|
|
if f'{group_name}/{speaker_group}' not in dataset:
|
|
dataset.append(f'{group_name}/{speaker_group}')
|
|
|
|
txts = []
|
|
wavs = []
|
|
|
|
for filename in os.listdir(f'./{input_audio}/{language}/{speaker_group}'):
|
|
if ".mp3" not in filename:
|
|
continue
|
|
|
|
inpath = Path(f'./{input_audio}/{language}/{speaker_group}/{filename}')
|
|
jsonpath = _replace_file_extension(inpath, ".json")
|
|
if not inpath.exists() or not jsonpath.exists():
|
|
missing["audio"].append(str(inpath))
|
|
continue
|
|
|
|
extension = os.path.splitext(filename)[-1][1:]
|
|
fname = filename.replace(f'.{extension}', "")
|
|
if "text" not in metadata:
|
|
continue
|
|
|
|
waveform, sample_rate = None, None
|
|
metadata = json.load(open(jsonpath, "r", encoding="utf-8"))
|
|
speaker_id = metadata["speaker"]
|
|
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{fname}.{extension}')
|
|
|
|
if _replace_file_extension(outpath, audio_extension).exists():
|
|
continue
|
|
|
|
text = metadata["text"]
|
|
|
|
if waveform is None:
|
|
waveform, sample_rate = load_audio(inpath)
|
|
|
|
wavs.append((
|
|
outpath,
|
|
text,
|
|
language,
|
|
waveform,
|
|
sample_rate
|
|
))
|
|
|
|
if len(wavs) > 0:
|
|
for job in tqdm(wavs, desc=f"Quantizing: {speaker_id}"):
|
|
try:
|
|
outpath, text, language, waveform, sample_rate = job
|
|
|
|
phones = phonemize(text, language=f'{language}'.lower())
|
|
qnt = quantize(waveform, sr=sample_rate, device=device)
|
|
|
|
|
|
if cfg.audio_backend == "dac":
|
|
np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), {
|
|
"codes": qnt.codes.cpu().numpy().astype(np.uint16),
|
|
"metadata": {
|
|
"original_length": qnt.original_length,
|
|
"sample_rate": qnt.sample_rate,
|
|
|
|
"input_db": qnt.input_db.cpu().numpy().astype(np.float32),
|
|
"chunk_length": qnt.chunk_length,
|
|
"channels": qnt.channels,
|
|
"padding": qnt.padding,
|
|
"dac_version": "1.0.0",
|
|
|
|
"text": text.strip(),
|
|
"phonemes": "".join(phones),
|
|
"language": language,
|
|
},
|
|
})
|
|
else:
|
|
np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), {
|
|
"codes": qnt.cpu().numpy().astype(np.uint16),
|
|
"metadata": {
|
|
"original_length": waveform.shape[-1],
|
|
"sample_rate": sample_rate,
|
|
|
|
"text": text.strip(),
|
|
"phonemes": "".join(phones),
|
|
"language": language,
|
|
},
|
|
})
|
|
except Exception as e:
|
|
print(f"Failed to quantize: {outpath}:", e)
|
|
if raise_exceptions:
|
|
raise e
|
|
continue
|
|
|
|
open(f"./{output_dataset}/missing.json", 'w', encoding='utf-8').write(json.dumps(missing))
|
|
open(f"./{output_dataset}/dataset.json", 'w', encoding='utf-8').write(json.dumps(dataset))
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--audio-backend", type=str, default="encodec")
|
|
parser.add_argument("--dtype", type=str, default="bfloat16")
|
|
parser.add_argument("--amp", action="store_true")
|
|
parser.add_argument("--input-audio", type=str, default="Emilia")
|
|
parser.add_argument("--output-dataset", type=str, default="training/dataset")
|
|
parser.add_argument("--device", type=str, default="cuda")
|
|
parser.add_argument("--raise-exceptions", action="store_true")
|
|
parser.add_argument("--stride", type=int, default=0)
|
|
parser.add_argument("--stride-offset", type=int, default=0)
|
|
parser.add_argument("--slice", type=str, default="auto")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# do some assumption magic
|
|
# to-do: find a nice way to spawn multiple processes where tqdm plays nicely
|
|
if args.device.isnumeric():
|
|
args.stride = torch.cuda.device_count()
|
|
args.stride_offset = int(args.device)
|
|
args.device = f'cuda:{args.device}'
|
|
|
|
process(
|
|
audio_backend=args.audio_backend,
|
|
input_audio=args.input_audio,
|
|
output_dataset=args.output_dataset,
|
|
raise_exceptions=args.raise_exceptions,
|
|
stride=args.stride,
|
|
stride_offset=args.stride_offset,
|
|
slice=args.slice,
|
|
|
|
device=args.device,
|
|
dtype=args.dtype,
|
|
amp=args.amp,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
main() |