98 lines
3.6 KiB
Python
98 lines
3.6 KiB
Python
# lifted from https://gist.github.com/pszemraj/e88ff24ab296b6d89057376b299b368a
|
|
# to-do: make this work with LoRAs, it complains
|
|
|
|
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
import transformers
|
|
import inspect
|
|
|
|
|
|
class Unsloth_Offloaded_Gradient_Checkpointer(torch.autograd.Function):
|
|
"""
|
|
Saves VRAM by smartly offloading to RAM.
|
|
Tiny hit to performance, since we mask the movement via non blocking calls.
|
|
"""
|
|
|
|
@staticmethod
|
|
@torch.cuda.amp.custom_fwd
|
|
def forward(ctx, forward_function, hidden_states, *args):
|
|
saved_hidden_states = hidden_states.to("cpu", non_blocking=True)
|
|
with torch.no_grad():
|
|
output = forward_function(hidden_states, *args)
|
|
ctx.save_for_backward(saved_hidden_states)
|
|
ctx.forward_function = forward_function
|
|
ctx.args = args
|
|
|
|
return output
|
|
|
|
pass
|
|
|
|
@staticmethod
|
|
@torch.cuda.amp.custom_bwd
|
|
def backward(ctx, dY):
|
|
(hidden_states,) = ctx.saved_tensors
|
|
hidden_states = hidden_states.to("cuda", non_blocking=True).detach()
|
|
hidden_states.requires_grad = True
|
|
with torch.enable_grad():
|
|
(output,) = ctx.forward_function(hidden_states, *ctx.args)
|
|
torch.autograd.backward(output, dY)
|
|
return (
|
|
None,
|
|
hidden_states.grad,
|
|
) + (
|
|
None,
|
|
) * len(ctx.args)
|
|
|
|
pass
|
|
|
|
|
|
pass
|
|
|
|
|
|
def new_gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
|
#assert gradient_checkpointing_kwargs == None
|
|
gradient_checkpointing_kwargs = None
|
|
if not self.supports_gradient_checkpointing:
|
|
raise ValueError(
|
|
f"{self.__class__.__name__} does not support gradient checkpointing."
|
|
)
|
|
|
|
gradient_checkpointing_func = Unsloth_Offloaded_Gradient_Checkpointer.apply
|
|
# For old GC format (transformers < 4.35.0) for models that live on the Hub
|
|
# we will fall back to the overwritten `_set_gradient_checkpointing` method
|
|
_is_using_old_format = (
|
|
"value" in inspect.signature(self._set_gradient_checkpointing).parameters
|
|
)
|
|
|
|
if not _is_using_old_format:
|
|
self._set_gradient_checkpointing(
|
|
enable=True, gradient_checkpointing_func=gradient_checkpointing_func
|
|
)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
if getattr(self, "_hf_peft_config_loaded", False):
|
|
# When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
|
|
# we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
|
|
# When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
|
|
# the gradients to make sure the gradient flows.
|
|
self.enable_input_require_grads()
|
|
|
|
|
|
def apply_unsloth_offloaded_gradient_checkpoint_monkey_patch():
|
|
transformers.modeling_utils.PreTrainedModel.gradient_checkpointing_enable = (
|
|
new_gradient_checkpointing_enable
|
|
) |