vall-e/vall_e/models/ar.py

301 lines
9.6 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from ..config import cfg
from .base import Base, list_to_tensor, Categorical
import torch
from torch.nn.utils.rnn import pad_sequence
from einops import rearrange
from torch import Tensor
from tqdm import trange
class AR(Base):
@property
def causal(self):
return True
@property
def norm_type(self):
return "ln"
@property
def arch_type(self) -> str:
if hasattr(self, "config") and self.config:
return self.config.arch_type
return cfg.models.ar.arch_type
@property
def n_prom_levels(self) -> int:
return cfg.models.prom_levels
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.models.ar.resp_levels
@property
def n_max_levels(self) -> int:
return cfg.models.max_levels
@property
def n_tasks(self) -> int:
return cfg.models.tasks
@property
def n_langs(self) -> int:
return cfg.models.langs
@property
def recurrent_chunk_size(self) -> int:
if cfg.mode == "training":
return 0
return cfg.inference.recurrent_chunk_size
"""
@property
def rotary_embedding_base(self) -> float:
if hasattr(self, "config") and self.config:
return self.config.rotary_embedding_base
return cfg.models.ar.rotary_embedding_base
"""
@property
def interleave(self) -> bool:
if hasattr(self, "config") and self.config:
return self.config.interleave
return False
@property
def monolithic(self) -> bool:
return False
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.models.ar.version
def _prune(self, l: Tensor):
indices = (l == self.stop_token).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
def _interleave( self, codes ):
if not self.interleave:
return codes
return codes.flatten()
def _deinterleave( self, codes, length = 0 ):
if not self.interleave:
return codes
return torch.unflatten( codes[:codes.shape[0] // self.n_prom_levels * self.n_prom_levels], 0, ( codes.shape[0] // self.n_prom_levels, self.n_prom_levels ) )
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
max_steps: int = 1000,
sampling_temperature: float = 1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
):
if resps_list is not None:
if self.interleave:
resps_list = [self._interleave(r) for r in resps_list]
else:
resps_list = [r[..., 0] for r in resps_list] # guarantees we only have the first levels
return super().forward(
text_list=text_list,
proms_list=proms_list,
resps_list=self._unsqueeze_list(resps_list),
targ_list=resps_list,
quant_levels=None,
)
device = text_list[0].device
batch_size = len(text_list)
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
stopped = torch.zeros(batch_size, device=device).bool()
recurrent_state = {} if cfg.inference.recurrent_forward else None
mirostat = [
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if sampling_mirostat_tau > 0.0 else None
sampling_beam_width_use_logs = True
scores = [ 1.0 ] * sampling_beam_width
if self.interleave:
max_steps *= self.n_prom_levels
# get next in sequence
for n in trange(max_steps // max(1, self.recurrent_chunk_size)):
resps_list = self._unsqueeze_list(sequence_list)
logits = super().forward(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
state=recurrent_state
)
r = super().sample(
logits=logits,
resps_list=resps_list,
temperature=sampling_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
length_penalty=sampling_length_penalty,
beam_width=sampling_beam_width,
mirostat=mirostat,
)
if mirostat is not None:
# r is the state
mirostat = r
# extract token from state
r = [ state["token"] for state in mirostat ]
# we do it here because the sampler will already expand our logits list
elif sampling_beam_width > 0:
# expand tuple
r, s = r
# first step, expand batch
if batch_size == 1:
batch_size *= sampling_beam_width
text_list = text_list * sampling_beam_width
proms_list = proms_list * sampling_beam_width
sequence_list = sequence_list * sampling_beam_width
stopped = torch.zeros(batch_size, device=device).bool()
# update scores
if sampling_beam_width_use_logs:
scores = [ (math.log(scores[i]) if scores[i] > 0 else 0) + math.log(score) for i, score in enumerate(s) ]
else:
scores = [ scores[i] * score for i, score in enumerate(s) ]
# append tokens
for i, ri in enumerate(r):
if self.stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri])
# stop token found
stopped |= r == self.stop_token
if stopped.all().item():
break
# pick the best scoring candidate
# desu this is always going to be candidate 0
if sampling_beam_width and len(scores) > 0:
best_idx, best_score = (0, 0)
for idx, score in enumerate(scores):
if best_score > score:
best_idx, best_score = idx, score
sequence_list = [sequence_list[best_idx]]
if self.interleave:
sequence_list = [self._deinterleave(r) for r in sequence_list]
return [self._prune(r) for r in sequence_list]
def example_usage():
cfg.trainer.backend = "local"
from functools import partial
from einops import repeat
from ..emb.qnt import decode_to_file
from ..engines import Engine
from tqdm import tqdm
from ..utils import wrapper as ml
device = "cuda"
x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels)
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
def tokenize(content, lang_marker="en"):
split = content.split(" ")
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
return torch.tensor([*map(symmap.get, phones)]).to()
qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device)
text_list = [
#torch.tensor([1, 2, 3], device=device),
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
]
proms_list = [
#x8(torch.tensor([1, 2, 3], device=device)),
qnt.to(device),
]
resps_list = [
qnt.to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 24,
}
"""
try:
kwargs['config'] = cfg.models.ar
except Exception as e:
pass
"""
model = AR(**kwargs).to(device)
steps = 500
optimizer = ml.Prodigy(model.parameters(), lr=1.0)
engine = Engine(model=model, optimizer=optimizer)
def sample( name, steps=600 ):
engine.eval()
out = engine(text_list, proms_list, max_steps=steps)
for i, o in enumerate(out):
wav, sr = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
def train():
engine.train()
t = trange(steps)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
tqdm.write(f"{stats}")
sample("init", 75)
train()
sample("final")
if __name__ == "__main__":
example_usage()