669 lines
23 KiB
Python
Executable File
669 lines
23 KiB
Python
Executable File
import math
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import traceback
|
||
import numpy as np
|
||
|
||
from typing import Literal, overload
|
||
from functools import partial
|
||
from einops import rearrange
|
||
|
||
from torch import Tensor, einsum, nn
|
||
from torch.distributions import Categorical
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
from torch.utils.checkpoint import checkpoint
|
||
from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision
|
||
|
||
from .retnet import RetNetDecoder, RetNetConfig
|
||
from .transformer import SinusoidalEmbedding, Block as TransformerBlock
|
||
|
||
def _create_mask(l, device):
|
||
"""1 is valid region and 0 is invalid."""
|
||
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
|
||
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
|
||
return (seq < stop).float() # (b t)
|
||
|
||
def _join(x: tuple[Tensor], sep: Tensor):
|
||
"""
|
||
Args:
|
||
x: (k t d)
|
||
sep: (d)
|
||
"""
|
||
ret = x[0]
|
||
for i in range(1, len(x)):
|
||
ret = torch.cat((ret, sep[None], x[i]), dim=0)
|
||
return ret
|
||
|
||
def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"):
|
||
"""
|
||
Args:
|
||
x_list: [(t d)]
|
||
Returns:
|
||
x: (? ? ?)
|
||
m: (? ? ?), same as x
|
||
"""
|
||
l = list(map(len, x_list))
|
||
x = rearrange(pad_sequence(x_list), pattern)
|
||
m = _create_mask(l, x_list[0].device)
|
||
m = m.t().unsqueeze(-1) # (t b 1)
|
||
m = rearrange(m, pattern)
|
||
m = m.to(x)
|
||
return x, m
|
||
|
||
# Simple filter to modify a token's probability if it shows up in the past
|
||
# `one_time` will only apply the penalty once
|
||
# `decay` is a factor that will exponentially apply to how far away it is
|
||
def reptition_penalize( logits, previous, factor=1.0, decay=0.0, one_time=True ):
|
||
if factor == 1.0 or previous is None:
|
||
return logits
|
||
|
||
unique = set()
|
||
priors = reversed(previous.tolist())
|
||
for distance, token in enumerate(priors):
|
||
# skip if we're only applying the decay once
|
||
if one_time and token in unique:
|
||
continue
|
||
|
||
distance += 1
|
||
logits[:, token] /= factor * (distance ** decay)
|
||
|
||
# add to set if we care about it
|
||
if one_time:
|
||
unique.add(token)
|
||
|
||
return logits
|
||
|
||
# Simple "filter" that modifies the logit for the stop token, based on the sequence length
|
||
# `length` is the length of the sequence currently
|
||
# `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences
|
||
# `token` is the stop token.
|
||
def length_penalize( logits, length, factor=0.0, token=-1 ):
|
||
if factor == 0.0:
|
||
return logits
|
||
|
||
logits[:, token] /= (length ** factor)
|
||
return logits
|
||
|
||
# Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||
def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ):
|
||
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
||
Args:
|
||
logits: logits distribution shape (batch size, vocabulary size)
|
||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||
Make sure we keep at least min_tokens per batch example in the output
|
||
"""
|
||
if top_k > 0:
|
||
top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check
|
||
# Remove all tokens with a probability less than the last token of the top-k
|
||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||
logits[indices_to_remove] = filter_value
|
||
|
||
if top_p < 1.0:
|
||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||
|
||
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
||
sorted_indices_to_remove = cumulative_probs > top_p
|
||
if min_tokens > 1:
|
||
# Keep at least min_tokens (set to min_tokens-1 because we add the first one below)
|
||
sorted_indices_to_remove[..., :min_tokens] = 0
|
||
# Shift the indices to the right to keep also the first token above the threshold
|
||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||
sorted_indices_to_remove[..., 0] = 0
|
||
|
||
# scatter sorted tensors to original indexing
|
||
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||
logits[indices_to_remove] = filter_value
|
||
|
||
return logits
|
||
|
||
# picks the top K tokens amongst a batch of logits
|
||
# logits: [Tensor] list of logits
|
||
# candidates: [(batch, token)] list, where batch indicates the index of the logits the given token is from
|
||
def top_k_logits_list( logits_list, k ):
|
||
# ( batch, tokens ) => ( batch x tokens )
|
||
logits = torch.cat( logits_list )
|
||
candidates = list(torch.topk(logits.flatten(), k).indices.tolist()) # perform top-k across all logits
|
||
for i, index in enumerate(candidates):
|
||
t = []
|
||
N = np.prod(logits.size())
|
||
for n in logits.size():
|
||
N //= n
|
||
t.append(index // N)
|
||
index %= N
|
||
candidates[i] = tuple(t)
|
||
return candidates
|
||
|
||
|
||
# Credit to: https://github.com/basusourya/mirostat/
|
||
# performs mirostat-based sampling
|
||
# logits: Tensor of logit probabilities
|
||
# state: the mirostat state
|
||
def mirostat_sample( logits, state = None ):
|
||
def compute_k(prob, n, tau):
|
||
num = 0
|
||
den = 0
|
||
for i in range(100):
|
||
b = prob[i]/prob[i+1]
|
||
t = (i+2)/(i+1)
|
||
num += math.log(b)*math.log(t)
|
||
den += math.log(t)**2
|
||
|
||
s = num/den
|
||
eps = s-1
|
||
k = ((eps*(2**(tau)))/(1-n**(-eps)))**(1/s)
|
||
k = round(k)
|
||
return k
|
||
|
||
if "max_surprise" not in state:
|
||
state["max_surprise"] = state["tau"] * 2
|
||
|
||
if "error_surprise" not in state:
|
||
state["error_surprise"] = 0
|
||
|
||
if "running_total_surprise" not in state:
|
||
state["running_total_surprise"] = 0
|
||
|
||
sorted_logits, sorted_indices = torch.sort( logits[-1, :], descending=True )
|
||
prob_original = torch.softmax( sorted_logits, dim=-1 ).tolist()
|
||
|
||
k = compute_k(prob_original, state["n"], state["max_surprise"]) + 1
|
||
|
||
sorted_logits = sorted_logits[0:k]
|
||
sorted_indices = sorted_indices[0:k]
|
||
prob_topk = torch.softmax(sorted_logits, dim = 0)
|
||
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
|
||
|
||
state["index_surprise"] = math.log2(1/prob_original[prev_i])
|
||
state["running_total_surprise"] += state["index_surprise"]
|
||
state["error_surprise"] = state["index_surprise"] - state["tau"]
|
||
state["max_surprise"] -= state["eta"] * state["error_surprise"]
|
||
state["token"] = sorted_indices[prev_i]
|
||
|
||
return state
|
||
|
||
|
||
# automagically parses a batch-list and returns it as a list
|
||
class Embedding(nn.Embedding):
|
||
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
|
||
if len(x_list) == 0:
|
||
return []
|
||
|
||
return super().forward(torch.cat(x_list)).split([*map(len, x_list)])
|
||
|
||
class MultiEmbedding(nn.Module):
|
||
"""
|
||
This embedding sums embeddings on different levels.
|
||
"""
|
||
|
||
def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False):
|
||
super().__init__()
|
||
self.monolithic = monolithic
|
||
self.max_n_levels = max_n_levels
|
||
self.n_tokens = n_tokens
|
||
self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim))
|
||
|
||
# to-do: select quant level from given quant_levels tensor if given (i.e. through the resp_emb)
|
||
# I imagine this is an oversight in the NAR.
|
||
def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None) -> list[Tensor]:
|
||
if len(x_list) == 0:
|
||
return []
|
||
|
||
# this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR
|
||
# the NAR cannot share RVQ-bin level 0 with the AR for the resp_emb
|
||
if self.monolithic:
|
||
w = self.weight[:1] if quant_levels is None else self.weight[1:]
|
||
else:
|
||
w = self.weight
|
||
|
||
padded_x_list = []
|
||
|
||
for i, xi in enumerate(x_list):
|
||
xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k
|
||
wi = w.shape[0] - xi.shape[1]
|
||
xi = F.pad(xi, (0, 0, 0, wi)) # t l k
|
||
padded_x_list.append(xi.to(w))
|
||
|
||
x = torch.cat(padded_x_list) # n l k
|
||
x = einsum("l k d, n l k -> n d", w, x)
|
||
|
||
x_list = x.split([*map(len, x_list)])
|
||
|
||
return x_list
|
||
|
||
# Embedding that sums each RVQ-bin level within a given input acoustic prompt
|
||
class AudioEmbedding(nn.Module):
|
||
def __init__(self, l_tokens, token_dim):
|
||
super().__init__()
|
||
self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens])
|
||
|
||
def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None ) -> list[Tensor]:
|
||
res_list = []
|
||
|
||
for i, xi in enumerate(x_list):
|
||
# prom
|
||
if quant_levels is None and xi.shape[-1] > 1:
|
||
x = sum( [ self.embeddings[k]( xi[:, k] ) for k in range(xi.shape[-1]) ] )
|
||
# AR resp
|
||
elif quant_levels is None or quant_levels[i] == 0:
|
||
x = self.embeddings[0]( xi[:, 0] )
|
||
# NAR resp
|
||
else:
|
||
x = sum( [ self.embeddings[k+1]( xi[:, k] ) for k in range(xi.shape[-1]) ] )
|
||
res_list.append(x)
|
||
|
||
return res_list
|
||
|
||
class Base(nn.Module):
|
||
@property
|
||
def causal(self) -> bool:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def arch_type(self) -> str:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def norm_type(self):
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def n_prom_levels(self) -> int:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def n_resp_levels(self) -> int:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def n_max_levels(self) -> int:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def n_langs(self) -> int:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def n_tasks(self) -> int:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def recurrent_chunk_size(self) -> int:
|
||
raise NotImplementedError
|
||
|
||
@property
|
||
def rotary_embedding_base(self) -> float:
|
||
return 10000
|
||
|
||
@property
|
||
def interleave(self) -> bool:
|
||
return False
|
||
|
||
@property
|
||
def monolithic(self) -> bool:
|
||
return False
|
||
|
||
@property
|
||
def version(self) -> int:
|
||
return 1
|
||
|
||
@property
|
||
def stop_token(self):
|
||
if not self.causal:
|
||
raise ValueError("Not using stop token!")
|
||
return self.n_tokens
|
||
|
||
@property
|
||
def ignore_index(self):
|
||
return -100
|
||
|
||
@staticmethod
|
||
def _samplewise_merge_tensors(*l, sep: Tensor | None):
|
||
if sep is None:
|
||
cat = torch.cat
|
||
else:
|
||
cat = partial(_join, sep=sep)
|
||
return [*map(cat, zip(*l))]
|
||
|
||
def __init__(
|
||
self,
|
||
n_tokens: int = 1024,
|
||
d_model: int = 512,
|
||
n_heads: int = 8,
|
||
n_layers: int = 12,
|
||
p_dropout: float = 0.1,
|
||
|
||
config = None,
|
||
):
|
||
super().__init__()
|
||
self.config = config
|
||
self.activation_checkpointing = self.config.activation_checkpointing if self.config is not None else True
|
||
|
||
self.n_tokens = n_tokens
|
||
self.d_model = d_model
|
||
self.n_heads = n_heads
|
||
self.n_layers = n_layers
|
||
|
||
# +1 to include the stop token
|
||
# to-do: undo this dogshit mistake; tasks tokens should be delegated to its own embedding
|
||
n_prom_tokens = n_tokens
|
||
n_resp_tokens = n_tokens + (1 if self.causal else 0) # AR requires a stop token to... know when to stop
|
||
|
||
self.text_emb = Embedding(n_tokens, d_model)
|
||
|
||
if self.version == 1: # legacy
|
||
n_prom_tokens += (self.n_tasks - 1) # old models have the task tokens in the prom
|
||
self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model)
|
||
self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic)
|
||
else:
|
||
# [1024] * 8
|
||
self.proms_emb = AudioEmbedding([n_prom_tokens] * self.n_prom_levels, d_model)
|
||
# [1025] + [1024] * 8
|
||
self.resps_emb = AudioEmbedding([n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1), d_model)
|
||
|
||
# self.langs_emb = Embedding(self.n_langs, d_model)
|
||
# self.tasks_emb = Embedding(self.n_tasks, d_model)
|
||
|
||
self.sep = nn.Parameter(torch.randn(d_model))
|
||
|
||
if self.arch_type == "transformer":
|
||
self.sin_emb = SinusoidalEmbedding(d_model)
|
||
self.blocks = nn.ModuleList([TransformerBlock(
|
||
d_model=d_model,
|
||
n_heads=n_heads,
|
||
p_dropout=p_dropout,
|
||
causal=self.causal,
|
||
norm_type=self.norm_type,
|
||
n_levels=self.n_resp_levels,
|
||
) for _ in range(n_layers) ])
|
||
elif self.arch_type == "retnet":
|
||
self.retnet = RetNetDecoder(RetNetConfig(
|
||
vocab_size=n_tokens,
|
||
decoder_embed_dim=d_model,
|
||
decoder_value_embed_dim =d_model * 2,
|
||
decoder_retention_heads=n_heads,
|
||
decoder_ffn_embed_dim=d_model * 4,
|
||
decoder_layers=n_layers,
|
||
dropout=p_dropout,
|
||
checkpoint_activations=self.activation_checkpointing,
|
||
activation_fn="gelu",
|
||
use_layernorm=True,
|
||
use_biases=True,
|
||
use_glu=False,
|
||
|
||
chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0,
|
||
recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0,
|
||
no_output_layer=True,
|
||
decoder_normalize_before=True,
|
||
|
||
rotary_embedding_base=self.rotary_embedding_base, # 10000
|
||
))
|
||
|
||
self.classifier = nn.Linear(d_model, n_resp_tokens)
|
||
|
||
self.accuracy_metric = MulticlassAccuracy(
|
||
n_resp_tokens,
|
||
top_k=10,
|
||
average="micro",
|
||
multidim_average="global",
|
||
ignore_index=self.ignore_index,
|
||
)
|
||
|
||
self.precision_metric = MulticlassPrecision(
|
||
n_resp_tokens,
|
||
top_k=10,
|
||
average="micro",
|
||
multidim_average="global",
|
||
ignore_index=self.ignore_index,
|
||
)
|
||
|
||
def forward(
|
||
self,
|
||
text_list: list[Tensor],
|
||
proms_list: list[Tensor],
|
||
resps_list: list[Tensor],
|
||
targ_list: list[Tensor] | None = None,
|
||
|
||
#langs_list: list[Tensor] | None = None,
|
||
#tasks_list: list[Tensor] | None = None,
|
||
|
||
quant_levels: Tensor | None = None,
|
||
state: dict | None = None,
|
||
):
|
||
x_list = self._samplewise_merge_tensors(
|
||
self.text_emb(text_list),
|
||
#self.langs_emb(langs_list),
|
||
self.proms_emb(proms_list),
|
||
#self.tasks_emb(tasks_list),
|
||
self.resps_emb(resps_list, quant_levels),
|
||
sep=self.sep,
|
||
)
|
||
|
||
x, m = list_to_tensor(x_list)
|
||
|
||
batch_size = len(text_list)
|
||
device = x.device
|
||
|
||
if state is not None and self.arch_type == "retnet":
|
||
# prefill
|
||
if len(state) == 0:
|
||
prefill_size = x.shape[1]
|
||
# run the initial prompt to fill the KV cache
|
||
for n in range(prefill_size):
|
||
xi = x[:, n, :].unsqueeze(1)
|
||
self.retnet(xi, incremental_state=state, token_embeddings=xi, features_only=True)
|
||
|
||
# grab last token(s)
|
||
x = x[:, -1, :].unsqueeze(1)
|
||
|
||
if self.arch_type == "transformer":
|
||
# ensures we specify a quant_level for the transformer implementation's AdaLN
|
||
l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels
|
||
l = l.to(device)
|
||
# inject position information
|
||
x = self.sin_emb.add_pe(x)
|
||
# pass our inputs through the transformer
|
||
for block in self.blocks:
|
||
x = block(x, m, l)
|
||
elif self.arch_type == "retnet":
|
||
# pass our inputs through the RetNet
|
||
x, _ = self.retnet(x, incremental_state=state, token_embeddings=x, features_only=True)
|
||
|
||
# output projection layer with masking
|
||
x = self.classifier(x) * m
|
||
|
||
# Remove padding
|
||
logits = [ hi[:li] for hi, li in zip(x, map(len, x_list)) ]
|
||
|
||
# compute loss if the target is given
|
||
if targ_list is not None:
|
||
ignore_sep = torch.tensor(self.ignore_index, device=device)
|
||
# create a tensor sequence with one RVQ-bin of the input prompt, but with `ignore_index`, as the prompt is not neeeded for computing the loss against
|
||
prom_list = [ torch.full_like(t[..., 0], self.ignore_index) for t in proms_list ]
|
||
# remake input sequence
|
||
text_prom_list = self._samplewise_merge_tensors( text_list, prom_list, sep=ignore_sep )
|
||
|
||
# process each batch
|
||
for i in range(len(text_prom_list)):
|
||
# for the AR and NAR, shift the text/input prompt into the future by 1, and ignore the rolled back token
|
||
text_prom_list[i] = text_prom_list[i].roll(-1, dims=0)
|
||
text_prom_list[i][-1] = self.ignore_index
|
||
|
||
# for the AR, shift the target response into the future by 1, and ignore the rolled back text token
|
||
if quant_levels is None or quant_levels[i] == 0:
|
||
targ_list[i] = targ_list[i].clone().roll(-1, dims=0) # clone ensures it's not an aliased copy/view of resps
|
||
targ_list[i][-1] = self.stop_token
|
||
|
||
# create the new target sequence to compute the loss against
|
||
target = torch.cat( self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep ) )
|
||
inputs = torch.cat( logits )
|
||
|
||
self.loss = dict(
|
||
# "nll" was in the original implementation and should actually just be called something else
|
||
nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index )
|
||
)
|
||
self.stats = dict(
|
||
acc = self.accuracy_metric( inputs, target ),
|
||
precision = self.precision_metric( inputs, target ),
|
||
)
|
||
|
||
return logits
|
||
|
||
def sample(
|
||
self,
|
||
logits: list[Tensor],
|
||
resps_list: list[Tensor],
|
||
quant_levels: Tensor | None = None,
|
||
|
||
temperature: float = 1.0,
|
||
top_k: int = -100,
|
||
top_p: float = 1.0,
|
||
|
||
repetition_penalty: float = 1.0,
|
||
repetition_penalty_decay: float = 0.0,
|
||
|
||
length_penalty: float = 0.0,
|
||
|
||
beam_width: int = 0,
|
||
|
||
mirostat: list[dict] | None = None,
|
||
):
|
||
# (NAR) return the entire generated response
|
||
if quant_levels is not None:
|
||
logits = [ logit[-l:] for logit, l in zip(logits, map(len, resps_list)) ]
|
||
# (AR chunkwise) return the last chunkwise piece
|
||
elif self.causal and self.recurrent_chunk_size > 0:
|
||
logits = [ logit[-l:] for logit, l in zip(logits, self.recurrent_chunk_size) ]
|
||
# (AR) return just the last code
|
||
else:
|
||
logits = [ logit[-1:] for logit in logits ]
|
||
|
||
# perform repetition penalizing
|
||
logits = [ reptition_penalize(logit, previous=resps[:, -1], factor=repetition_penalty, decay=repetition_penalty_decay) for logit, resps in zip( logits, resps_list ) ]
|
||
|
||
# (AR) perform length penalizing
|
||
if quant_levels is None and self.causal:
|
||
logits = [ length_penalize(logit, length=l + 1, factor=length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, resps_list) ) ]
|
||
|
||
# scale our logits by the temp
|
||
logits = [ logit / temperature for logit in logits ]
|
||
|
||
# perform top_k/top_p filtering of our logits
|
||
if top_k > 0 or top_p < 1.0:
|
||
logits = [ top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p) for logit in logits ]
|
||
|
||
# do mirostat sampling
|
||
# currently incompatible with beam searching with the way the two are implemented, perhaps a night of brain bashing can make the two work
|
||
if mirostat is not None:
|
||
# mirostat sampling
|
||
return [ mirostat_sample(logit, state=state) for logit, state in zip(logits, mirostat) ]
|
||
|
||
# do beam search (naive implementation)
|
||
# picks the top-k across all batches, and re-batches those resultant tokens
|
||
# returns the logit scores as well to be P-concatted with the previous scores
|
||
# to-do: not naively implement beam searching
|
||
if beam_width > 1:
|
||
candidates = top_k_logits_list( logits, beam_width )
|
||
res = [ torch.tensor(token, device=logits[batch].device, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ]
|
||
scores = [ logits[batch].flatten()[token] for batch, token in candidates ]
|
||
return res, scores
|
||
|
||
# and sample
|
||
return [ Categorical(logits=logit).sample() for logit in logits ]
|
||
|
||
def example_usage():
|
||
from ..config import cfg
|
||
cfg.trainer.backend = "local"
|
||
cfg.trainer.check_for_oom = False
|
||
|
||
from functools import partial
|
||
|
||
from einops import repeat
|
||
|
||
from ..emb.qnt import decode_to_file
|
||
from ..engines import Engine, Engines
|
||
from tqdm import tqdm, trange
|
||
from ..utils import wrapper as ml
|
||
|
||
from .ar import AR
|
||
from .nar import NAR
|
||
|
||
device = "cuda"
|
||
x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels)
|
||
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
|
||
def tokenize(content, lang_marker="en"):
|
||
split = content.split(" ")
|
||
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
|
||
return torch.tensor([*map(symmap.get, phones)]).to()
|
||
|
||
kwargs = {
|
||
'n_tokens': 1024,
|
||
'd_model': 1024,
|
||
'n_heads': 16,
|
||
'n_layers': 12,
|
||
}
|
||
models = { "ar": AR(**kwargs).to(device), "nar": NAR(**kwargs).to(device) }
|
||
|
||
for name, model in models.items():
|
||
print(f"{name} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
||
|
||
engines = Engines({ name: Engine(model=model, optimizer=ml.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() })
|
||
|
||
train = True
|
||
|
||
qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device)
|
||
text_list = [
|
||
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
|
||
#tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device),
|
||
]
|
||
|
||
proms_list = [
|
||
qnt.to(device),
|
||
]
|
||
resps_list = [
|
||
qnt.to(device),
|
||
]
|
||
|
||
def sample( name, steps=600 ):
|
||
AR = None
|
||
NAR = None
|
||
|
||
engines.eval()
|
||
for name, engine in engines.items():
|
||
if name[:2] == "ar":
|
||
AR = engine
|
||
elif name[:3] == "nar":
|
||
NAR = engine
|
||
|
||
resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0)
|
||
resps_list = [r.unsqueeze(-1) for r in resps_list]
|
||
codes = NAR( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
|
||
|
||
decode_to_file(resps_list[0], f"./data/ar.{name}.wav", device=device)
|
||
decode_to_file(codes[0], f"./data/ar+nar.{name}.wav", device=device)
|
||
|
||
if train:
|
||
sample("init", 15)
|
||
|
||
engines.train()
|
||
t = trange(500)
|
||
for i in t:
|
||
stats = {"step": i}
|
||
"""
|
||
for name, engine in engines.items():
|
||
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
||
"""
|
||
stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list})
|
||
tqdm.write(f"{stats}")
|
||
else:
|
||
for name, engine in engines.items():
|
||
engine.module.load_state_dict(torch.load(f"./data/{name}.pth"))
|
||
|
||
sample("final")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
example_usage()
|