vall-e/vall_e/utils/wrapper.py

142 lines
3.6 KiB
Python
Executable File

from contextlib import contextmanager
import math
import torch
import torch.nn.functional as F
from ..config import cfg
Embedding = torch.nn.Embedding
Linear = torch.nn.Linear
# https://github.com/kyegomez/BitNet
if cfg.optimizations.bitnet:
from bitnet import BitLinear
if cfg.optimizations.bitsandbytes:
import bitsandbytes as bnb
if cfg.optimizations.linear:
if cfg.optimizations.bitnet:
Linear = BitLinear
else:
Linear = bnb.nn.Linear8bitLt
if cfg.optimizations.embedding:
Embedding = bnb.nn.modules.Embedding
"""
Embedding.forward = lambda self, input: ( self.norm(F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)).to(self.weight.dtype) )
"""
if cfg.optimizations.bitsandbytes:
import bitsandbytes as bnb
Adam = bnb.optim.Adam8bit
AdamW = bnb.optim.AdamW8bit
SGD = bnb.optim.SGD8bit
Adagrad = bnb.optim.Adagrad8bit
else:
Adam = torch.optim.Adam
AdamW = torch.optim.AdamW
SGD = torch.optim.SGD
Adagrad = torch.optim.Adagrad
# handles generically converting to a specific tensor type and converting back (implemented solely for bfloat16)
@contextmanager
def autocast(input, from_dtype, to_dtype):
if input.dtype == from_dtype:
input = input.to(to_dtype)
yield input
input = input.to(from_dtype)
else:
yield input
@contextmanager
def autocasts(input, from_dtype, to_dtype):
if input.dtype in from_dtype:
from_dtype = input.dtype
input = input.to(to_dtype)
yield input
input = input.to(from_dtype)
else:
yield input
# handles temporarily upcasting 'index tensors' so torch will stop bitching
def autocast_forward( func ):
def wrapper( self, input, *args, **kwargs ):
with autocasts( input, [torch.int16, torch.int8, torch.uint8, torch.float16, torch.bfloat16], torch.int32 ) as k:
return func( self, k, *args, **kwargs )
return wrapper
Embedding.forward = autocast_forward(Embedding.forward)
if cfg.optimizations.fp8:
import transformer_engine.pytorch as te
Linear = te.Linear
@contextmanager
def autocast():
yield te.fp8_autocast(enabled=True)
else:
@contextmanager
def autocast():
yield torch.autocast("cuda", dtype=cfg.trainer.dtype, enabled=cfg.trainer.amp)
if cfg.optimizations.injects and cfg.optimizations.bitsandbytes:
torch.nn.Linear = Linear
torch.nn.Embedding = Embedding
torch.optim.Adam = Adam
torch.optim.AdamW = AdamW
torch.optim.SGD = SGD
# disgusting kludge, but it works (just realized BitNet has its own replacement routine)
def replace_linear( model, verbose=False ):
bnb = cfg.optimizations.bitsandbytes and cfg.optimizations.linear and not cfg.optimizations.bitnet
device = next(model.parameters()).device
linears = [k.split('.') for k, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
klass = Linear
for *parent, k in linears:
name = '.'.join(parent)
# copy parameters
m = getattr( model.get_submodule(name), k )
if isinstance(m, klass):
continue
in_features = m.in_features
out_features = m.out_features
bias = m.bias is not None
kwargs = dict(in_features=in_features, out_features=out_features, bias=bias) if not bnb else dict(input_features=in_features, output_features=out_features, bias=bias)
# overwrite
setattr(
model.get_submodule(name), k,
klass( **kwargs ).to(device=device, dtype=cfg.trainer.dtype)
)
if verbose:
print(f"Replacing {name}.{k} to", klass)
return model
# https://github.com/konstmish/prodigy
try:
from prodigyopt import Prodigy
except Exception as e:
pass