463 lines
14 KiB
Python
463 lines
14 KiB
Python
"""
|
||
This is an experiment to:
|
||
* entertain a thought to try and abide by HF's transformers API (to benefit from caching better)
|
||
* conform to a single embedding (instead of a bunch of them) by folding/unfolding inputs
|
||
* stop trying to make a mixed AR+NAR model work since it seems lobotomized if I keep trying to enforce both recurrent and parallel inferencing (despite a penalty cost)
|
||
+ I will not cave and go with codebook patterns, not yet.
|
||
"""
|
||
|
||
from ..config import cfg
|
||
|
||
from ..data import fold_inputs, unfold_outputs
|
||
|
||
import torch
|
||
import torch.nn.functional as F
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
from torch import Tensor
|
||
from torch.nn import CrossEntropyLoss
|
||
from torch.utils.checkpoint import checkpoint
|
||
from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision
|
||
|
||
import random
|
||
import math
|
||
|
||
from einops import rearrange
|
||
from tqdm import trange
|
||
|
||
AVAILABLE_ARCHES = []
|
||
|
||
try:
|
||
from transformers import LlamaForCausalLM, LlamaConfig
|
||
AVAILABLE_ARCHES.append("llama")
|
||
except Exception as e:
|
||
print("Error importing `llama` arch:", e)
|
||
pass
|
||
|
||
try:
|
||
from .retnet_hf import RetNetConfig
|
||
from ..ext.retnet_hf.modeling_retnet import RetNetForCausalLM
|
||
|
||
AVAILABLE_ARCHES.append("retnet")
|
||
except Exception as e:
|
||
print("Error importing `retnet` arch:", e)
|
||
pass
|
||
|
||
try:
|
||
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm
|
||
|
||
def MambaMixelModel_forward(self, input_ids, inference_params=None, **mixer_kwargs):
|
||
hidden_states = self.embedding(input_ids)
|
||
residual = None
|
||
for layer in self.layers:
|
||
if self.gradient_checkpointing and hidden_states.requires_grad:
|
||
hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, use_reentrant=False )
|
||
else:
|
||
hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params )
|
||
if not self.fused_add_norm:
|
||
residual = (hidden_states + residual) if residual is not None else hidden_states
|
||
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
|
||
else:
|
||
# Set prenorm=False here since we don't need the residual
|
||
hidden_states = MambaLayerNormFn(
|
||
hidden_states,
|
||
self.norm_f.weight,
|
||
self.norm_f.bias,
|
||
eps=self.norm_f.eps,
|
||
residual=residual,
|
||
prenorm=False,
|
||
residual_in_fp32=self.residual_in_fp32,
|
||
is_rms_norm=isinstance(self.norm_f, MambaRMSNorm)
|
||
)
|
||
return hidden_states
|
||
|
||
MambaMixelModel.forward = MambaMixelModel_forward
|
||
|
||
AVAILABLE_ARCHES.append("mamba")
|
||
AVAILABLE_ARCHES.append("mamba2")
|
||
except Exception as e:
|
||
print("Error importing `mamba` arch:", e)
|
||
pass
|
||
|
||
|
||
SELECTED_ARCH = cfg.model.arch_type
|
||
if SELECTED_ARCH not in AVAILABLE_ARCHES:
|
||
raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available")
|
||
|
||
if SELECTED_ARCH in ["mamba","mamba2"]:
|
||
LlmArchClass = MambaLMHeadModel
|
||
elif SELECTED_ARCH == "llama":
|
||
LlmArchClass = LlamaForCausalLM
|
||
elif SELECTED_ARCH == "retnet":
|
||
LlmArchClass = RetNetForCausalLM
|
||
else:
|
||
raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available")
|
||
|
||
class Model(LlmArchClass):
|
||
def __init__(
|
||
self,
|
||
d_model=1024,
|
||
n_layers=12,
|
||
n_heads=16,
|
||
p_dropout=0.1,
|
||
|
||
config = cfg.model,
|
||
):
|
||
self.hyper_config = config
|
||
|
||
hf_attention = config.attention if config is not None else None
|
||
gradient_checkpointing = config.gradient_checkpointing if config is not None else True
|
||
# text_tokens + rvq levels + [audio tokens * codebooks] (prom) + [audio tokens * codebooks] (resp) + stop
|
||
vocab_size = 256 + cfg.model.max_levels + (1024 * cfg.model.max_levels) + (1024 * cfg.model.max_levels) + 1
|
||
|
||
if SELECTED_ARCH == "llama":
|
||
super().__init__(config=LlamaConfig(
|
||
vocab_size=vocab_size,
|
||
hidden_size=d_model,
|
||
max_position_embeddings=cfg.dataset.frames_per_second * cfg.model.max_levels * 60, # max-length of 60 seconds
|
||
intermediate_size=d_model*4,
|
||
num_hidden_layers=n_layers,
|
||
num_attention_heads=n_heads,
|
||
attention_dropout=p_dropout,
|
||
num_key_value_heads=n_heads,
|
||
sliding_window=cfg.dataset.frames_per_second * cfg.model.max_levels * 12,
|
||
hidden_act="gelu",
|
||
is_encoder_decoder=False,
|
||
is_decoder=True,
|
||
attn_implementation=hf_attention,
|
||
))
|
||
|
||
if gradient_checkpointing:
|
||
self.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
|
||
use_reentrant=False
|
||
))
|
||
elif SELECTED_ARCH == "retnet":
|
||
super().__init__(config=RetNetConfig(
|
||
vocab_size=vocab_size,
|
||
decoder_embed_dim=d_model,
|
||
decoder_value_embed_dim =d_model * 2,
|
||
decoder_retention_heads=n_heads,
|
||
decoder_ffn_embed_dim=d_model * 4,
|
||
decoder_layers=n_layers,
|
||
dropout=p_dropout,
|
||
checkpoint_activations=gradient_checkpointing,
|
||
activation_fn="gelu",
|
||
use_layernorm=False,
|
||
use_biases=False,
|
||
use_glu=True,
|
||
|
||
#chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0,
|
||
#recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0,
|
||
#no_output_layer=True,
|
||
#rotary_embedding_base=self.rotary_embedding_base, # 10000
|
||
|
||
decoder_normalize_before=True,
|
||
))
|
||
elif SELECTED_ARCH in ["mamba","mamba2"]:
|
||
super().__init__(config=MambaConfig(
|
||
vocab_size=vocab_size,
|
||
d_model=d_model,
|
||
n_layer=n_layers*2,
|
||
ssm_cfg={"layer": "Mamba2", "chunk_size":64} if SELECTED_ARCH == "mamba2" else {},
|
||
fused_add_norm=True,
|
||
residual_in_fp32=True,
|
||
))
|
||
|
||
self.backbone.gradient_checkpointing = gradient_checkpointing
|
||
|
||
self.accuracy_metric = None if True else MulticlassAccuracy(
|
||
vocab_size,
|
||
top_k=10,
|
||
average="micro",
|
||
multidim_average="global",
|
||
ignore_index=-100,
|
||
)
|
||
|
||
def generate(
|
||
self,
|
||
*args,
|
||
**kwargs
|
||
):
|
||
if SELECTED_ARCH in ["mamba","mamba2"]:
|
||
kwargs["cg"] = True
|
||
|
||
if "attention_mask" in kwargs:
|
||
kwargs.pop("attention_mask")
|
||
|
||
if "do_sample" in kwargs:
|
||
kwargs.pop("do_sample")
|
||
|
||
if "min_length" in kwargs:
|
||
kwargs.pop("min_length")
|
||
|
||
return super().generate(*args, **kwargs)
|
||
|
||
def forward(
|
||
self,
|
||
*args,
|
||
**kwargs,
|
||
):
|
||
if SELECTED_ARCH in ["mamba","mamba2"]:
|
||
if "attention_mask" in kwargs:
|
||
kwargs.pop("attention_mask")
|
||
|
||
labels = kwargs.pop("labels") if "labels" in kwargs else None
|
||
|
||
output = super().forward(*args, **kwargs)
|
||
logits = output.logits
|
||
|
||
# i HATE the correct way
|
||
if labels is not None:
|
||
if self.hyper_config is None or not self.hyper_config.loss_factors:
|
||
loss = sum([ F.cross_entropy( logit[:-1, :], label[1:], ignore_index=-100 ) for logit, label in zip( logits, labels ) ])
|
||
self.loss = dict(
|
||
nll = loss,
|
||
)
|
||
|
||
if self.accuracy_metric is not None:
|
||
self.stats = dict(
|
||
acc = (sum([ self.accuracy_metric( logit, target ) for logit, target in zip( logits, labels ) ] ) / len( logits )).item()
|
||
)
|
||
|
||
else:
|
||
sep = 3
|
||
# determine specific sections to focus on
|
||
indices = [ [ idx for idx, token in enumerate( batch ) if token == sep ] for i, batch in enumerate( labels ) ]
|
||
|
||
text_index = 0
|
||
resp_index = 1 # 1 indluces everything non text, -3 includes pre_resp + resp (ignores prom, probably better to include prom here)
|
||
|
||
labels_text = [ batch[:indices[i][text_index] + 1 ] for i, batch in enumerate( labels ) ]
|
||
labels_resp = [ batch[indices[i][resp_index] + 1:] for i, batch in enumerate( labels ) ]
|
||
|
||
logits_text = [ batch[:indices[i][text_index] + 1 ] for i, batch in enumerate( logits ) ]
|
||
logits_resp = [ batch[indices[i][resp_index] + 1:] for i, batch in enumerate( logits ) ]
|
||
|
||
loss_text = sum([ F.cross_entropy( logit[:-1, :], label[1:], ignore_index=-100 ) for logit, label in zip( logits_text, labels_text ) ]) / len(logits_text) * self.hyper_config.loss_factor("text")
|
||
loss_resp = sum([ F.cross_entropy( logit[:-1, :], label[1:], ignore_index=-100 ) for logit, label in zip( logits_resp, labels_resp ) ]) / len(logits_resp) * self.hyper_config.loss_factor("resp")
|
||
|
||
self.loss = dict(
|
||
text = loss_text,
|
||
resp = loss_resp,
|
||
)
|
||
|
||
if self.accuracy_metric is not None:
|
||
self.stats = dict(
|
||
acc = dict(
|
||
text = (sum([ self.accuracy_metric( logit, target ) for logit, target in zip( logits_text, labels_text ) ] ) / len( logits_text )).item(),
|
||
resp = (sum([ self.accuracy_metric( logit, target ) for logit, target in zip( logits_resp, labels_resp ) ] ) / len( logits_resp )).item(),
|
||
)
|
||
)
|
||
|
||
return output
|
||
|
||
def example_usage():
|
||
cfg.trainer.backend = "local"
|
||
cfg.hyperparameters.gradient_accumulation_steps = 1
|
||
if cfg.audio_backend == "dac":
|
||
cfg.sample_rate = 44_000
|
||
|
||
from functools import partial
|
||
from einops import repeat
|
||
from tqdm import tqdm
|
||
|
||
from ..emb.qnt import decode_to_file, unload_model
|
||
from ..engines import Engine
|
||
from ..utils import wrapper as ml
|
||
|
||
import numpy as np
|
||
import re
|
||
|
||
device = "cuda"
|
||
|
||
def tokenize(content):
|
||
return torch.tensor( cfg.tokenizer.encode(content) )
|
||
|
||
def _load_quants(path) -> Tensor:
|
||
qnt = np.load(path, allow_pickle=True)[()]
|
||
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.max_levels, :].t().to(torch.int16)
|
||
|
||
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
|
||
|
||
|
||
text_list = [
|
||
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
|
||
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
|
||
]
|
||
prom_list = [
|
||
qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
]
|
||
resp_list = [
|
||
qnt[:, :].to(device),
|
||
#qnt[cfg.dataset.frames_per_second:, :].to(device),
|
||
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
]
|
||
|
||
text_list = text_list[:1]
|
||
prom_list = prom_list[:1]
|
||
resp_list = resp_list[:1]
|
||
|
||
kwargs = {}
|
||
model = Model(**kwargs).to(device)
|
||
steps = 100
|
||
if cfg.model.arch_type == "mamba2":
|
||
steps = 100
|
||
elif cfg.model.arch_type == "llama":
|
||
steps = 500
|
||
elif cfg.model.interleave:
|
||
steps = 250
|
||
|
||
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.cfg_path is not None else "prodigy"
|
||
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.cfg_path is not None else ""
|
||
learning_rate = cfg.hyperparameters.learning_rate if cfg.cfg_path is not None else None
|
||
|
||
if cfg.optimizations.dadaptation:
|
||
# do not combine the two
|
||
if scheduler == "schedulefree":
|
||
scheduler = ""
|
||
|
||
learning_rate = 1.0
|
||
|
||
if optimizer == "prodigy":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0
|
||
|
||
optimizer = ml.Prodigy
|
||
elif optimizer == "adagrad":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-2
|
||
|
||
optimizer = ml.Adagrad
|
||
elif optimizer == "adamw":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-4
|
||
|
||
optimizer = ml.AdamW
|
||
elif optimizer == "sdg":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-4
|
||
|
||
optimizer = ml.SGD
|
||
else:
|
||
raise ValueError(f"Unrecognized optimizer: {optimizer}")
|
||
|
||
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
|
||
|
||
optimizer = optimizer(model.parameters(), lr=learning_rate)
|
||
|
||
if scheduler == "schedulefree":
|
||
if isinstance(optimizer, ml.AdamW):
|
||
scheduler = ml.schedulefree.AdamWScheduleFree
|
||
elif isinstance(optimizer, ml.SGD):
|
||
scheduler = ml.schedulefree.SGDScheduleFree
|
||
else:
|
||
scheduler = None
|
||
|
||
if scheduler is not None:
|
||
print("Scheduler:", scheduler)
|
||
optimizer = scheduler( model.parameters(), lr = learning_rate )
|
||
|
||
if cfg.optimizations.replace and cfg.optimizations.linear:
|
||
model = ml.replace_linear( model )
|
||
|
||
if cfg.optimizations.replace and cfg.optimizations.embedding:
|
||
model = ml.replace_embedding( model )
|
||
|
||
engine = Engine(model=model, optimizer=optimizer)
|
||
|
||
torch.save( {
|
||
'module': model.state_dict()
|
||
}, f"./data/{SELECTED_ARCH}.pth" )
|
||
|
||
print(f"{LlmArchClass} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
||
|
||
@torch.inference_mode()
|
||
def sample( name, steps=cfg.model.max_levels*cfg.dataset.frames_per_second*6 ):
|
||
engine.eval()
|
||
batch_size = len(text_list)
|
||
resp_list = None
|
||
if cfg.model.interleave:
|
||
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list)
|
||
output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=steps, eos_token_id=3, do_sample=False)
|
||
|
||
unfolded = unfold_outputs( output )
|
||
resp_list = unfolded["resp_list"]
|
||
else:
|
||
resp_list = [ [] for _ in range(batch_size) ]
|
||
for l in range(cfg.model.max_levels):
|
||
quant_levels = [ l for _ in range(batch_size) ]
|
||
|
||
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=resp_list, quant_levels=quant_levels)
|
||
min_length = 1
|
||
for batch in input_ids:
|
||
min_length = max( min_length, batch.shape[0] + 1 )
|
||
|
||
output = model.generate(
|
||
input_ids=input_ids,
|
||
attention_mask=attention_mask,
|
||
min_length=min_length,
|
||
max_length=min_length+steps*2,
|
||
eos_token_id=3,
|
||
do_sample=False
|
||
)
|
||
|
||
unfolded = unfold_outputs( output, quant_levels=quant_levels )
|
||
|
||
if l == 0:
|
||
steps = 0
|
||
|
||
for batch, resp in enumerate(unfolded["resp_list"]):
|
||
length = resp.shape[-1]
|
||
|
||
# store length
|
||
if l == 0:
|
||
steps = max( steps, length )
|
||
# pad
|
||
else:
|
||
resp = resp[:steps]
|
||
if length < steps:
|
||
resp = torch.cat([ resp, torch.Tensor([ 0 for _ in range(steps-length) ]).to(resp) ])
|
||
resp_list[batch].append( resp )
|
||
|
||
for i, resp in enumerate( resp_list ):
|
||
resp_list[i] = torch.stack( resp ).t()
|
||
|
||
for i, batch in enumerate(resp_list):
|
||
_ = decode_to_file(batch.to(device=device), f"data/{SELECTED_ARCH}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
|
||
|
||
unload_model()
|
||
|
||
def train():
|
||
engine.train()
|
||
t = trange(steps)
|
||
for i in t:
|
||
stats = {"step": i}
|
||
|
||
batch_size = len(text_list)
|
||
quant_levels = None if cfg.model.interleave else torch.randint(0 if "ar" in cfg.model.capabilities else 1, cfg.model.max_levels, (batch_size,))
|
||
if quant_levels is not None:
|
||
resps_list = [ [] if l == 0 else resp for l, resp in zip(quant_levels, resp_list) ]
|
||
else:
|
||
resps_list = [ resp for resp in resp_list ]
|
||
|
||
|
||
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=resps_list, targ_list=resp_list, quant_levels=quant_levels)
|
||
target_ids, target_attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=resp_list, targ_list=resp_list, ignore_index=-100, quant_levels=quant_levels)
|
||
|
||
stats |= engine.traverse(input_ids=input_ids, labels=target_ids, attention_mask=attention_mask)
|
||
stats |= engine.gather_attribute("stats")
|
||
stats |= {"grad_norm": engine.get_global_grad_norm()}
|
||
|
||
tqdm.write(f"{stats}")
|
||
|
||
torch.save( {
|
||
'module': model.state_dict()
|
||
}, f"./data/{SELECTED_ARCH}.pth" )
|
||
|
||
#sample("init", 5)
|
||
train()
|
||
sample("final")
|
||
|
||
if __name__ == "__main__":
|
||
example_usage()
|