vall-e/vall_e/emb/codecs/dac.py

177 lines
5.0 KiB
Python

import torch
from dac import DACFile
from audiotools import AudioSignal
from dac.utils import load_model as __load_dac_model
from typing import Union
from pathlib import Path
"""
Patch decode to skip things related to the metadata (namely the waveform trimming)
So far it seems the raw waveform can just be returned without any post-processing
A smart implementation would just reuse the values from the input prompt
"""
from dac.model.base import CodecMixin
@torch.no_grad()
def CodecMixin_compress(
self,
audio_path_or_signal: Union[str, Path, AudioSignal],
win_duration: float = 1.0,
verbose: bool = False,
normalize_db: float = -16,
n_quantizers: int = None,
) -> DACFile:
"""Processes an audio signal from a file or AudioSignal object into
discrete codes. This function processes the signal in short windows,
using constant GPU memory.
Parameters
----------
audio_path_or_signal : Union[str, Path, AudioSignal]
audio signal to reconstruct
win_duration : float, optional
window duration in seconds, by default 5.0
verbose : bool, optional
by default False
normalize_db : float, optional
normalize db, by default -16
Returns
-------
DACFile
Object containing compressed codes and metadata
required for decompression
"""
audio_signal = audio_path_or_signal
if isinstance(audio_signal, (str, Path)):
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
self.eval()
original_padding = self.padding
original_device = audio_signal.device
audio_signal = audio_signal.clone()
original_sr = audio_signal.sample_rate
resample_fn = audio_signal.resample
loudness_fn = audio_signal.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if audio_signal.signal_duration >= 10 * 60 * 60:
resample_fn = audio_signal.ffmpeg_resample
loudness_fn = audio_signal.ffmpeg_loudness
original_length = audio_signal.signal_length
resample_fn(self.sample_rate)
input_db = loudness_fn()
if normalize_db is not None:
audio_signal.normalize(normalize_db)
audio_signal.ensure_max_of_audio()
nb, nac, nt = audio_signal.audio_data.shape
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
win_duration = (
audio_signal.signal_duration if win_duration is None else win_duration
)
if audio_signal.signal_duration <= win_duration:
# Unchunked compression (used if signal length < win duration)
self.padding = True
n_samples = nt
hop = nt
else:
# Chunked inference
self.padding = False
# Zero-pad signal on either side by the delay
audio_signal.zero_pad(self.delay, self.delay)
n_samples = int(win_duration * self.sample_rate)
# Round n_samples to nearest hop length multiple
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
hop = self.get_output_length(n_samples)
codes = []
range_fn = range if not verbose else tqdm.trange
for i in range_fn(0, nt, hop):
x = audio_signal[..., i : i + n_samples]
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
audio_data = x.audio_data.to(self.device)
audio_data = self.preprocess(audio_data, self.sample_rate)
with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp):
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
codes.append(c.to(original_device))
chunk_length = c.shape[-1]
codes = torch.cat(codes, dim=-1)
dac_file = DACFile(
codes=codes,
chunk_length=chunk_length,
original_length=original_length,
input_db=input_db,
channels=nac,
sample_rate=original_sr,
padding=self.padding,
dac_version="1.0.0",
#dac_version=SUPPORTED_VERSIONS[-1],
)
if n_quantizers is not None:
codes = codes[:, :n_quantizers, :]
self.padding = original_padding
return dac_file
@torch.no_grad()
def CodecMixin_decompress(
self,
obj: Union[str, Path, DACFile],
verbose: bool = False,
) -> AudioSignal:
self.eval()
if isinstance(obj, (str, Path)):
obj = DACFile.load(obj)
original_padding = self.padding
self.padding = obj.padding
range_fn = range if not verbose else tqdm.trange
codes = obj.codes
original_device = codes.device
chunk_length = obj.chunk_length
recons = []
for i in range_fn(0, codes.shape[-1], chunk_length):
c = codes[..., i : i + chunk_length].to(self.device)
z = self.quantizer.from_codes(c)[0]
r = self.decode(z)
recons.append(r.to(original_device))
recons = torch.cat(recons, dim=-1)
recons = AudioSignal(recons, self.sample_rate)
# to-do, original implementation
if not hasattr(obj, "dummy") or not obj.dummy:
resample_fn = recons.resample
loudness_fn = recons.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if recons.signal_duration >= 10 * 60 * 60:
resample_fn = recons.ffmpeg_resample
loudness_fn = recons.ffmpeg_loudness
recons.normalize(obj.input_db)
resample_fn(obj.sample_rate)
recons = recons[..., : obj.original_length]
loudness_fn()
recons.audio_data = recons.audio_data.reshape(
-1, obj.channels, obj.original_length
)
self.padding = original_padding
return recons
CodecMixin.compress = CodecMixin_compress
CodecMixin.decompress = CodecMixin_decompress