837 lines
31 KiB
Python
837 lines
31 KiB
Python
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
|
|
|
import math
|
|
import torch
|
|
import logging
|
|
import random
|
|
|
|
from typing import Literal, overload, Optional, Tuple, Union, List
|
|
|
|
from torch import Tensor, nn
|
|
from transformers.cache_utils import Cache
|
|
|
|
from transformers import LlamaModel, LlamaConfig, LlamaForCausalLM
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaRMSNorm, LlamaRotaryEmbedding, apply_rotary_pos_emb, repeat_kv
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
AVAILABLE_ATTENTIONS = []
|
|
|
|
LN_2 = 0.69314718056
|
|
|
|
try:
|
|
from transformers.utils import is_flash_attn_2_available
|
|
|
|
if is_flash_attn_2_available():
|
|
AVAILABLE_ATTENTIONS.append("flash_attention_2")
|
|
except Exception as e:
|
|
_logger.warning(f"Error while querying for `flash_attention_2` support: {str(e)}")
|
|
|
|
try:
|
|
from .attention.fused import attention as _fused_attention
|
|
def fused_attn_func(q, k, v, softmax_scale=None, causal=False, *args, **kwargs):
|
|
return _fused_attention( q, k, v, causal, softmax_scale )
|
|
|
|
AVAILABLE_ATTENTIONS.append("fused_attn")
|
|
except Exception as e:
|
|
_logger.warning(f"Error while querying for `fused_attn` support: {str(e)}")
|
|
|
|
|
|
is_rocm = any("AMD" in torch.cuda.get_device_properties(i).name for i in range(torch.cuda.device_count()))
|
|
is_ampere_or_newer_gpu = any(torch.cuda.get_device_properties(i).major >= 8 for i in range(torch.cuda.device_count()))
|
|
|
|
try:
|
|
if is_rocm:
|
|
# requires pain to set up on Navi3, and for no backwards (training) support
|
|
from flash_attn import flash_attn_func
|
|
AVAILABLE_ATTENTIONS.append("flash_attn")
|
|
|
|
elif not is_ampere_or_newer_gpu:
|
|
# Uses https://github.com/ZRayZzz/flash-attention-v100/
|
|
# Currently doesn't work because it's hard-coded to use a head dim of 128, will throw NaNs otherwise...
|
|
from flash_attn_v100 import flash_attn_func as flash_attn_v100_func
|
|
|
|
AVAILABLE_ATTENTIONS.append("flash_attn")
|
|
AVAILABLE_ATTENTIONS.append("flash_attn_v100") # needed to signal to use padding
|
|
def flash_attn_func(q, k, v, softmax_scale=None, causal=False, *args, **kwargs):
|
|
return flash_attn_v100_func(
|
|
q,
|
|
k,
|
|
v,
|
|
softmax_scale,
|
|
causal
|
|
)
|
|
else:
|
|
# Borrowed from https://github.com/turboderp/exllamav2/blob/master/exllamav2/attn.py#L32
|
|
# Adapted to provide flash_attn_v1 support
|
|
import flash_attn
|
|
flash_attn_ver = [int(t) for t in flash_attn.__version__.split(".") if t.isdigit()]
|
|
|
|
if flash_attn_ver <= [1, 0, 9]:
|
|
AVAILABLE_ATTENTIONS.append("flash_attn")
|
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
|
|
from einops import rearrange
|
|
|
|
# converts the flash_attn_2 calling convention to flash_attn_1's
|
|
def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=False, return_attn_probs=False, deterministic=False, *args, **kwargs):
|
|
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
|
seqlen_k = k.shape[1]
|
|
q, k, v = [rearrange(x, 'b s ... -> (b s) ...').contiguous() for x in [q, k, v]]
|
|
|
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device)
|
|
cu_seqlens_k = cu_seqlens_q
|
|
|
|
return flash_attn_unpadded_func(
|
|
q, k, v,
|
|
cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
|
|
dropout_p, softmax_scale, causal, return_attn_probs, deterministic
|
|
)
|
|
|
|
has_flash_attn = True
|
|
elif [2, 2, 1] <= flash_attn_ver < [2, 5, 7]:
|
|
AVAILABLE_ATTENTIONS.append("flash_attn")
|
|
from flash_attn import flash_attn_func
|
|
has_flash_attn = True
|
|
elif [2, 5, 7] <= flash_attn_ver:
|
|
AVAILABLE_ATTENTIONS.append("flash_attn")
|
|
from flash_attn import flash_attn_func, flash_attn_with_kvcache
|
|
|
|
signature = list(inspect.signature(flash_attn_func).parameters)
|
|
has_flash_attn_with_window = "window_size" in signature
|
|
has_flash_attn_with_softcap = "softcap" in signature
|
|
|
|
import flash_attn_2_cuda as flash_attn_cuda
|
|
|
|
has_flash_attn = True
|
|
has_flash_attn_with_paged = True
|
|
except Exception as e:
|
|
_logger.warning(f"Error while querying for `flash_attn` support: {str(e)}")
|
|
|
|
try:
|
|
from xformers.ops.fmha import memory_efficient_attention
|
|
from xformers.ops.fmha.attn_bias import LowerTriangularFromBottomRightMask, LowerTriangularMask
|
|
|
|
AVAILABLE_ATTENTIONS.append("xformers")
|
|
except Exception as e:
|
|
_logger.warning(f"Error while importing `xformers`: {str(e)}")
|
|
|
|
# to-do: find a better way to query for if there's available kernels since these return true regardless
|
|
if torch.backends.cuda.flash_sdp_enabled():
|
|
AVAILABLE_ATTENTIONS.append("flash_(sdpa)")
|
|
|
|
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
|
AVAILABLE_ATTENTIONS.append("mem_efficient")
|
|
|
|
if torch.backends.cuda.math_sdp_enabled():
|
|
AVAILABLE_ATTENTIONS.append("math")
|
|
|
|
if torch.backends.cuda.cudnn_sdp_enabled():
|
|
AVAILABLE_ATTENTIONS.append("cudnn")
|
|
|
|
if AVAILABLE_ATTENTIONS:
|
|
AVAILABLE_ATTENTIONS.append("sdpa")
|
|
AVAILABLE_ATTENTIONS.append("default")
|
|
|
|
class LlamaAttention_Adapted(LlamaAttention):
|
|
def __init__(self, *args, **kwargs):
|
|
self.mode = kwargs.pop("mode", "sdpa")
|
|
|
|
if self.mode == "math":
|
|
self.mode = torch.nn.attention.SDPBackend.MATH
|
|
elif self.mode == "mem_efficient":
|
|
self.mode = torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION
|
|
elif self.mode == "flash_(sdpa)":
|
|
self.mode = torch.nn.attention.SDPBackend.FLASH_ATTENTION
|
|
elif self.mode == "cudnn":
|
|
self.mode = torch.nn.attention.SDPBackend.CUDNN_ATTENTION
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# extracts inputs from a batch based on requested causality
|
|
def split_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
is_causal: Optional[list] = None,
|
|
target_causal_state: Optional[bool] = True,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
|
**kwargs,
|
|
):
|
|
indices = [ i for i, state in enumerate( is_causal ) if state == target_causal_state ]
|
|
|
|
# no matching inputs in batch
|
|
if not indices:
|
|
return indices, None, None, None
|
|
|
|
# entire batch is homogenous
|
|
if len( indices ) == hidden_states.shape[0]:
|
|
output_hidden_states, output_self_attn_weights, output_present_key_values = self.forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
is_causal=target_causal_state,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=False,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
**kwargs,
|
|
)
|
|
return indices, output_hidden_states, output_self_attn_weights, output_present_key_values
|
|
|
|
input_hidden_states = torch.stack( [ hidden_states[i] for i in indices ] )
|
|
input_attention_mask = torch.stack( [ attention_mask[i] for i in indices ] ) if attention_mask is not None else None
|
|
input_position_ids = torch.stack( [ position_ids[i] for i in indices ] ) if position_ids is not None else None
|
|
input_position_embeddings = (
|
|
torch.stack( [ position_embeddings[0][i] for i in indices ] ),
|
|
torch.stack( [ position_embeddings[1][i] for i in indices ] ),
|
|
) if position_embeddings is not None else None
|
|
|
|
output_hidden_states, output_self_attn_weights, output_present_key_values = self.forward(
|
|
hidden_states=input_hidden_states,
|
|
attention_mask=input_attention_mask,
|
|
is_causal=target_causal_state,
|
|
position_ids=input_position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=False,
|
|
cache_position=cache_position,
|
|
position_embeddings=input_position_embeddings,
|
|
**kwargs,
|
|
)
|
|
return indices, output_hidden_states, output_self_attn_weights, output_present_key_values
|
|
|
|
# Adapted from LlamaAttention.forward
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
is_causal: bool = True,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
mode = "default" if output_attentions else self.mode
|
|
non_split_attention = [
|
|
"default",
|
|
torch.nn.attention.SDPBackend.MATH,
|
|
torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
|
|
torch.nn.attention.SDPBackend.FLASH_ATTENTION,
|
|
torch.nn.attention.SDPBackend.CUDNN_ATTENTION
|
|
]
|
|
|
|
# split per batch because other attention mechanisms do not have a conditional is_causal per-batch, only for the entire input
|
|
if isinstance( is_causal, list ) and mode not in non_split_attention:
|
|
# initialize lists
|
|
attn_hidden_states = [ None for _ in is_causal ]
|
|
self_attn_weights = [ None for _ in is_causal ]
|
|
present_key_values = [ None for _ in is_causal ]
|
|
|
|
# process causal inputs in a batch
|
|
causal_indices, causal_hidden_states, causal_self_attn_weights, causal_present_key_values = self.split_forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
is_causal=is_causal,
|
|
target_causal_state=True,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=False,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
# process non-causal inputs in a batch
|
|
non_causal_indices, non_causal_hidden_states, non_causal_self_attn_weights, non_causal_present_key_values = self.split_forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
is_causal=is_causal,
|
|
target_causal_state=False,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=False,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
# insert causal outputs to batch
|
|
for i, idx in enumerate( causal_indices ):
|
|
attn_hidden_states[idx] = causal_hidden_states[i]
|
|
|
|
if output_attentions:
|
|
self_attn_weights[idx] = causal_self_attn_weights[i]
|
|
|
|
# insert non-causal outputs to batch
|
|
for i, idx in enumerate( non_causal_indices ):
|
|
attn_hidden_states[idx] = non_causal_hidden_states[i]
|
|
|
|
if output_attentions:
|
|
self_attn_weights[idx] = non_causal_self_attn_weights[i]
|
|
|
|
# combine list
|
|
attn_hidden_states = torch.stack( attn_hidden_states, dim=0 )
|
|
if output_attentions:
|
|
self_attn_weights = torch.stack( self_attn_weights, dim=0 )
|
|
|
|
return attn_hidden_states, output_attentions, []
|
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
if position_embeddings is None:
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
attn_scores = None
|
|
|
|
if mode in ["xformers", "flash_attn"]:
|
|
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
|
# to be able to avoid many of these transpose/reshape/view.
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
"""
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
|
# in fp32. (LlamaRMSNorm handles it correctly)
|
|
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
if torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
# Handle the case where the model is quantized
|
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.q_proj.weight.dtype
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
"""
|
|
|
|
if mode == "flash_attn":
|
|
attn_output = flash_attn_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
causal=is_causal,
|
|
softmax_scale=1.0 / math.sqrt(self.head_dim),
|
|
dropout_p=dropout_rate,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
|
elif mode == "xformers":
|
|
attn_output = memory_efficient_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_bias = LowerTriangularMask(),
|
|
scale = 1.0 / math.sqrt(self.head_dim),
|
|
p=dropout_rate
|
|
)
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
return attn_output, attn_scores, past_key_value
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
x_mask = attention_mask
|
|
|
|
if attention_mask is not None:
|
|
x_mask = x_mask[:, :, :, : key_states.shape[-2]]
|
|
|
|
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
|
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
|
if query_states.device.type == "cuda" and x_mask is not None:
|
|
query_states = query_states.contiguous()
|
|
key_states = key_states.contiguous()
|
|
value_states = value_states.contiguous()
|
|
|
|
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
|
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
|
# is_causal = True if x_mask is None and q_len > 1 else False
|
|
|
|
if mode in ["fused_attn"]:
|
|
attn_output = fused_attn_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
causal=is_causal,
|
|
softmax_scale=1.0 / math.sqrt(self.head_dim),
|
|
dropout_p=dropout_rate,
|
|
)
|
|
elif mode in ["default"]:
|
|
attn_scores = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
# cringe logic
|
|
attn_weights = (attn_scores + x_mask) if attention_mask is not None else (attn_scores)
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
else:
|
|
is_causal = True if x_mask is None and q_len > 1 else False
|
|
with torch.nn.attention.sdpa_kernel(self.mode):
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_mask=x_mask,
|
|
dropout_p=dropout_rate,
|
|
is_causal=is_causal,
|
|
)
|
|
|
|
# cringe
|
|
if attn_scores is None and output_attentions:
|
|
attn_scores = attn_output
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.view(bsz, q_len, -1)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, attn_scores, past_key_value
|
|
|
|
class LlamaDecoderLayer_Adapted(LlamaDecoderLayer):
|
|
# apply timestep embedding with attention norm
|
|
# I don't have a concrete idea on how helpful this is, as:
|
|
# * F5-TTS's UNetT implementation doesn't do this
|
|
# * F5-TTS's DiT does this, but only for pre-attention normalization
|
|
# * MaskGCT does this for both
|
|
# * Muse doesn't do this, but instead appends the timestep embedding
|
|
def weigh_by_timestep(
|
|
self,
|
|
hidden_states,
|
|
timesteps,
|
|
):
|
|
if timesteps is None:
|
|
return hidden_states
|
|
|
|
for i, timestep in enumerate( timesteps ):
|
|
# invalid
|
|
if not isinstance( timestep, torch.Tensor ):
|
|
continue
|
|
hidden_states[i] *= timestep
|
|
|
|
return hidden_states
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
is_causal: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
|
timesteps: Optional[list] = None,
|
|
**kwargs,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*):
|
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
|
query_sequence_length, key_sequence_length)` if default attention is used.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence
|
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
|
with `head_dim` being the embedding dimension of each attention head.
|
|
kwargs (`dict`, *optional*):
|
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
|
into the model
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
hidden_states = self.weigh_by_timestep( hidden_states, timesteps )
|
|
# Self Attention
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
is_causal=is_causal,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
**kwargs,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.weigh_by_timestep( hidden_states, timesteps )
|
|
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
class LlamaModel_Adapted(LlamaModel):
|
|
def __init__(self, config, *args, **kwargs):
|
|
self.layer_dropout_p = kwargs.pop("layer_dropout_p", 0.1)
|
|
self.early_exit_scale = kwargs.pop("early_exit_scale", 0.1)
|
|
self.early_exit_r = kwargs.pop("early_exit_r", 2)
|
|
|
|
#super().__init__(*args, **kwargs)
|
|
super(LlamaModel, self).__init__(config)
|
|
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
self.layers_n = config.num_hidden_layers
|
|
|
|
# self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
|
self.layers = nn.ModuleList(
|
|
[LlamaDecoderLayer_Adapted(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
|
self.gradient_checkpointing = False
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def dropoff_layer( self, l ):
|
|
if not self.training:
|
|
return False
|
|
|
|
# this could probably a LUT but I'm not fiending for aggressive mal-optimizations
|
|
D = math.exp((l * LN_2) / (self.layers_n - 1)) - 1
|
|
P = D * self.layer_dropout_p
|
|
return random.random() < P
|
|
|
|
def cirriculum( self, l, t=None ):
|
|
# no timestep data passed, just treat all layers as enabled
|
|
# there doesn't seem /too/ bad of a performance hit, but the paper mentions it affecting accuracy of the last layer if all layers had early exit
|
|
if t is None:
|
|
return 1
|
|
|
|
# YUCK
|
|
# this guarantees at least R layers are active at all intervals, which is important because this gives a division by zero otherwise
|
|
for i in range(self.early_exit_r):
|
|
if l == ((t % self.layers_n) + i * (self.layers_n // self.early_exit_r)) % self.layers_n:
|
|
return 1
|
|
return 0
|
|
|
|
def early_exit_loss( self, losses, t=None ):
|
|
return sum([ self.normalized_per_layer_loss_scale( l, t ) * losses[l] for l in range(0, self.layers_n) ])
|
|
|
|
def normalized_per_layer_loss_scale( self, l, t=None ):
|
|
return (self.cirriculum(l, t) * self.early_exit_factor( l )) / sum([ self.cirriculum(i, t) * self.early_exit_factor( i ) for i in range(0, self.layers_n) ])
|
|
|
|
def early_exit_factor( self, l ):
|
|
if 0 <= l and l < self.layers_n:
|
|
return self.early_exit_scale * sum([ i for i in range(0, l) ])
|
|
return self.layers_n - 1 + self.early_exit_scale * sum([ i for i in range(0, self.layers_n - 1) ])
|
|
|
|
# shamelessly borrowed from https://github.com/open-mmlab/Amphion/blob/main/models/tts/maskgct/llama_nar.py#L256 until I replace it with my own noncausal-mask maker
|
|
def _update_noncausal_mask(
|
|
self,
|
|
attention_mask,
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
):
|
|
# create noncausal mask
|
|
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
|
|
|
bsz, seq_len, _ = inputs_embeds.size()
|
|
|
|
# generate default mask based on input
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones( (bsz, seq_len), dtype=torch.bool, device=inputs_embeds.device )
|
|
|
|
# make square
|
|
expanded_mask = attention_mask[:, None, None, :].expand( bsz, 1, seq_len, seq_len ).to( dtype=inputs_embeds.dtype )
|
|
|
|
# invert from 1.0 = attend, 0.0 = masked to 0.0 = valid, -inf = masked
|
|
inverted_mask = 1.0 - expanded_mask
|
|
return inverted_mask.masked_fill( inverted_mask.to(dtype=torch.bool), torch.finfo(inputs_embeds.dtype).min )
|
|
|
|
# gut out the things that just shoves responsibility on SDPA's is_causal generating a mask because this causes problems
|
|
def _update_causal_mask(
|
|
self,
|
|
attention_mask: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
cache_position: torch.Tensor,
|
|
past_key_values: Cache,
|
|
output_attentions: bool,
|
|
):
|
|
"""
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
if attention_mask is not None and 0.0 in attention_mask:
|
|
return attention_mask
|
|
return None
|
|
"""
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
|
|
"""
|
|
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
|
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
|
# to infer the attention mask.
|
|
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
|
attention_mask,
|
|
inputs_embeds=input_tensor,
|
|
past_key_values_length=past_seen_tokens,
|
|
is_training=self.training,
|
|
):
|
|
return None
|
|
"""
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device
|
|
sequence_length = input_tensor.shape[1]
|
|
if using_static_cache:
|
|
target_length = past_key_values.get_max_cache_shape()
|
|
else:
|
|
target_length = (
|
|
attention_mask.shape[-1]
|
|
if isinstance(attention_mask, torch.Tensor)
|
|
else past_seen_tokens + sequence_length + 1
|
|
)
|
|
|
|
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=sequence_length,
|
|
target_length=target_length,
|
|
dtype=dtype,
|
|
device=device,
|
|
cache_position=cache_position,
|
|
batch_size=input_tensor.shape[0],
|
|
)
|
|
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and attention_mask is not None
|
|
and attention_mask.device.type == "cuda"
|
|
and not output_attentions
|
|
):
|
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
return causal_mask
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
is_causal: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
layer_skip_lambda = None,
|
|
timesteps: Optional[list] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache:
|
|
_logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
)
|
|
use_cache = False
|
|
|
|
"""
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
"""
|
|
|
|
# kept for BC (non `Cache` `past_key_values` inputs)
|
|
return_legacy_cache = False
|
|
if use_cache and not isinstance(past_key_values, Cache):
|
|
return_legacy_cache = True
|
|
if past_key_values is None:
|
|
past_key_values = DynamicCache()
|
|
else:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
_logger.warning_once(
|
|
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
|
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
|
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
|
)
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
cache_position = torch.arange(
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
)
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
# because we can attend to both a causal and a non-causal sequence, generate both masks then pick among which to use per batch
|
|
if is_causal is not None:
|
|
"""
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=inputs_embeds.shape[1],
|
|
target_length=attention_mask.shape[-1] if attention_mask is not None else inputs_embeds.shape[1],
|
|
dtype=inputs_embeds.dtype,
|
|
device=inputs_embeds.device,
|
|
cache_position=cache_position,
|
|
batch_size=inputs_embeds.shape[0],
|
|
)
|
|
"""
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions)
|
|
noncausal_mask = self._update_noncausal_mask(attention_mask, inputs_embeds, past_key_values)
|
|
|
|
x_mask = torch.stack( [ causal_mask[i, :, :, :] if state else noncausal_mask[i, :, :, :] for i, state in enumerate( is_causal ) ], dim=0 )
|
|
else:
|
|
x_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# create position embeddings to be shared across the decoder layers
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for l, decoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
x_mask,
|
|
is_causal,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
position_embeddings,
|
|
timesteps,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=x_mask,
|
|
is_causal=is_causal,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
timesteps=timesteps,
|
|
)
|
|
|
|
if not self.dropoff_layer( l ):
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
# check if we should early-exit
|
|
if layer_skip_lambda and layer_skip_lambda( l, hidden_states ):
|
|
#_logger.info(f"Early exit at layer: {l}")
|
|
break
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if return_legacy_cache:
|
|
next_cache = next_cache.to_legacy_cache()
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
) |