vall-e/vall_e/config.py

1121 lines
45 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import copy
#import diskcache
import h5py
import json
import os
import subprocess
import sys
import time
import argparse
import yaml
import random
import logging
import itertools
import torch
import numpy as np
from dataclasses import asdict, dataclass, field
from functools import cached_property
from pathlib import Path
from .utils.distributed import world_size
from .utils.io import torch_load
from .utils import set_seed, prune_missing, md5_hash
@dataclass()
class BaseConfig:
yaml_path: str | None = None # path passed in through --yaml
@property
def cfg_path(self):
if self.yaml_path:
return Path(self.yaml_path.parent)
return Path(__file__).parent.parent / "data"
@property
def rel_path(self):
return Path(self.cfg_path)
@property
def cache_dir(self):
return self.rel_path / ".cache"
@property
def data_dir(self):
return self.rel_path / "data"
@property
def metadata_dir(self):
return self.rel_path / "metadata"
@property
def ckpt_dir(self):
return self.rel_path / "ckpt"
@property
def log_dir(self):
return self.rel_path / "logs" / str(self.start_time)
@cached_property
def start_time(self):
return int(time.time())
@cached_property
def git_commit(self):
try:
cmd = "git rev-parse HEAD"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
@cached_property
def git_status(self):
try:
cmd = "git status"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
def dumps(self):
data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")}
data = {k: v for k, v in data.items() if not callable(v)}
return json.dumps(data, indent=2, default=str)
def dump(self, path=None):
if path is None:
path = self.log_dir / "cfg.json"
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w") as f:
f.write(self.dumps())
# ick
@classmethod
def prune_missing( cls, yaml ):
default = cls(**{})
default.format()
yaml, missing = prune_missing( source=default, dest=yaml )
if missing:
_logger.warning(f'Missing keys in YAML: {missing}')
return yaml
@classmethod
def from_yaml( cls, yaml_path ):
state = {}
state = yaml.safe_load(open(yaml_path, "r", encoding="utf-8"))
state.setdefault("yaml_path", yaml_path)
state = cls.prune_missing( state )
return cls(**state)
@classmethod
def from_model( cls, model_path, lora_path=None ):
if not model_path.exists():
raise Exception(f'Model path does not exist: {model_path}')
# load state dict and copy its stored model config
model_kwargs = { "attention": "auto", "training": False, "teacher": False }
model_state_dict = [ torch_load( model_path )["config"] | { "path": model_path } | model_kwargs ] if model_path and model_path.exists() else []
lora_state_dict = [ torch_load( lora_path )["config"] | { "path": lora_path } ] if lora_path and lora_path.exists() else []
state = { "models": model_state_dict, "loras": lora_state_dict, "trainer": { "load_state_dict": True } }
return cls(**state)
@classmethod
def from_cli(cls, args=sys.argv):
# legacy support for yaml=`` format
for i, arg in enumerate(args):
if arg.startswith("yaml"):
args[i] = f'--{arg}'
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too
args, unknown = parser.parse_known_args(args=args)
if args.model:
return cls.from_model( args.model, args.lora )
if args.yaml:
return cls.from_yaml( args.yaml )
return cls(**{})
def __repr__(self):
return str(self)
def __str__(self):
return self.dumps()
@dataclass()
class Dataset:
training: list[Path] = field(default_factory=lambda: []) # paths to load into the training dataset
validation: list[Path] = field(default_factory=lambda: []) # paths to load into the validation dataset
noise: list[Path] = field(default_factory=lambda: []) # paths to load into the noise dataset
# to-do: replace these since I feel this can be a bottleneck
speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" # function eval'd to extract a speaker's name from an utternace path
speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'" # function eval'd to extract a speaker's group from an utternace path
# to-do: validate if I can ignore this since this is an artifact from when I only saved phonemes and encoded audio, and no metadata
speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups
use_hdf5: bool = False # whether to load from an HDF5 dataset
hdf5_name: str = "data.h5" # file name to load the HDF5 dataset
hdf5_flag: str = "a" # flag to load the HDF5 file, automatically adjusted anyways
use_metadata: bool = False # use genretaed metadata to aid in dataset loading
validate: bool = True # validate each utterance on wheter it can be included based on duration range caps
workers: int = 8 # number of dataloader workers to spawn
cache: bool = True # use diskcache to cache the dataset
min_utterances: int = 2 # minimum number of utterances a speaker can have
max_utterances: int = 0 # max number of utterances a speaker can have (0 to disable)
duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0]) # the duration range an utterance can be to be included in the dataset
sample_type: str = "path" # path | speaker
sample_order: str = "interleaved" # duration
sample_shuffle: bool = True # shuffles the indices in the sampler
sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable
# for a full sized model with 12GiB of VRAM for Encodec, 120 seconds is just enough
# for a full sized model with 24GiB of VRAM for Encodec, 380 seconds is 80% VRAM consumed (but it might be limited by batch size)
prompt_duration_range: list[float] = field(default_factory=lambda: [3.0, 6.0]) # the duration range the input prompts can be
prompt_max_samples: int = 3 # maximum number of utterances that can be included in an input prompt for training
prompt_continuous_utterance_p: float = 0.0 # probability to use the target utterance as an input prompt rather than using a different utterance
prompt_similar_p: float = 0.75 # odds of sampling for a similar prompt instead of a random prompt
prompt_similar_top_k: int = 1 # top-k similar candidates to sample from
prompt_similar_top_k_offset: int = 0 # offset from the top-k to sample from
prompt_inject_noise: bool = False # adds noise to the input prompt waveform to try and vary things
resps_max_samples: int = 1 # number of samples to target for training
resps_append_p: float = 1.0 # probability to append another sample to the training target
resps_pad_silence_p: float = 0.0 # probability to pad resp with silence to fit within the next window
tasks_list: list[str] = field(default_factory=lambda: ["tts"]) # list of tasks to train against
reencode_on_concat: bool = False # whether to concat audio by decode => concat => encode, or naively concat codes
reencode_device: str = "cpu" # "cpu" is slower but saves memory, cuda throws [rank0]: RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
noise_scale: float = 0.25 # scaling noise value
retokenize_text: bool = False
_frames_per_second: int = 0 # allows setting your own hint
def hash_key(self, *args):
return md5_hash([ self.use_hdf5, self.min_duration, self.max_duration ] + [*args])
@cached_property
def frames_per_second(self):
if self._frames_per_second > 0:
return self._frames_per_second
if cfg.audio_backend == "dac":
if cfg.sample_rate == 44_100:
return 87
if cfg.sample_rate == 16_000:
return 50
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
return 75
@property
def min_phones(self):
return self.phones_range[0]
@property
def max_phones(self):
return self.phones_range[1]
@property
def min_duration(self):
return self.duration_range[0]
@property
def max_duration(self):
return self.duration_range[1]
# collection of experimental variables that should not be tampered with unless you know what you're doing
@dataclass()
class ModelExperimentalSettings:
hf: bool = False # strictly utilizes a HF model and handles converting input IDs / outputs accordingly
interleave: bool = False # use an interleaved AR rather than a split AR + NAR (worse performance and results due to everything being causal)
split_classifiers: bool = False # each RVQ level gets its own classifier / output proj / LM head rather than sharing one for all RVQ levels (to-do: also split for text/prom)
audio_embedding_sums: bool = False # whether each pass uses the previous RVQ codes or only the current level
# a model trained not summing audio embeddings *can* have this enabled without any apparent issues
# a model trained to sum *cannot* have this disabled without any apparent issues, or at least the ar+nar-retnet-8 can't.
# in theory a model that is trained to sum embeddings can peform better due to "seeing" previous levles (due to the R in RVQ standing for residuals...), but in practice it seems fine to not do so
audio_embedding_mode: str | None = None # None | "exclusive" | "inclusive", subjugates the audio backend's encoding/decoding model for embeddings
kv_heads: int = 0 # MHA or GQA (for supported backends)
rvq_levels_p: str | list = "auto" # determines odds of selecting RVQ levels when training, "equal" will make each level equally likely
rvq_level_range: list = field(default_factory=lambda: []) # some cringe to try and limit the RVQ training range for LoRAs, isn't necesary
unified_position_ids: bool = True # False will generate position IDs partitioned for each section
tie_classifier_to_embedding: bool = False # Ties the classifier output to their respective embeddings, this does not seem to do anything good in testing
# performs token dropout to compensate for errors
token_dropout_error: float = 0.0 # probability to nudge a token by ±1
token_dropout_rate: float = 0.0 # probability to randomly set a token to a special dropout value
token_dropout_rvq_levels: list = field(default_factory=lambda: [1,8]) # determines which levels to do dropout, by default do not do dropout on RVQ level 0
causal_size: int = 1 # experimental setting to see if I can just do parallel decoding in chunks instead of one-at-a-time without resorting to exotic solutions
# VALL-E 2's approach of "combining token embeddings to group them" sounds terribad for a shared AR/NAR model
# however, introducing partial parallel decoding for the AR maybe maybe MAYBE might help try and unify the AR/NAR tasks better, MAYBE
# it just seems like a bitch to try and train something worthwhile with it, since there's crackles every other token
# RetNet's chunked inferencing might be a better place for this
masking_train_p: float = 0.0 # odds of training with masking
masking_train_rvq_levels: list = field(default_factory=lambda: [0,0]) # determines which levels to do mask training on
masking_ratio: str | float = 0.8 # sets a masking ratio, "random" will randomly pick, "rand" will pick between [0.2, 0.8]
ignore_inputs_for_loss: bool = True # only calculate the loss on the outputs since thats what matters, as the inputs that do have loss calculated upon affects the loss for the entire sequence
noncausal_masks: bool = False # to correct an oversight with Llama always using causal masks......
# classifier-free guidance training settings
cfg_cond_dropout_p: float = 0.0 # 0.2 # probability to drop out text and audio during training
cfg_text_dropout_p: float = 0.0 # 0.0 # probability to drop out input audio prompt during training
cfg_prom_dropout_p: float = 0.0 # 0.3 # probability to drop out input audio prompt during training
# failed experiment
layerskip: bool = False # layerskip compatible model (or training for)
#layerskip_rvq_levels: list = field(default_factory=lambda: []) # RVQ levels to train / inference layerskip for (to-do: implement, see if it matters)
layerskip_r: int = 2 # number of layers to factor into early-exit loss calc
layerskip_p_max: float = 0.1 # maximum probabilty to dropout the last layer, used for calculating layer dropout probabilities
layerskip_e_scale: float = 0.2 # early-exit loss scalar value
teacher_alpha: float = 0.5 # mixing factor when performing knowledge distillation
teacher_temperature: float = 1.0
# I really need to clean this up
@dataclass()
class Model:
name: str = "ar+nar" # vanity name for the model
version: int = 5 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding, 3+ = additional embeddings
size: str | dict = "full" # preset string or explicitly defined dimensionality
resp_levels: int = 8 # RVQ-bin levels this model supports
tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") (unused)
langs: int = 1 # defined languages (semi-unused)
tones: int = 1 # defined tones (unsued)
experts: int = 1 # for mixtral / retnet-ts
arch_type: str = "llama" # underling LM architecture used
training: bool = False # I really need to attend to this
teacher: bool = False # if this is to be treated as a teacher
frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training
attention: str = "auto" # for llama arch_types: attention used
dropout: float = 0.1 # adjustable dropout value
path: Path | None = None
#loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 1.0, "resp": 1.0 }) # disable it by default since it causes a little more harm than good
loss_factors: dict = field(default_factory=lambda: {})
capabilities: list = field(default_factory=lambda: ["ar", "nar"]) # + ["lang", "tone"] if you have your dataset labeled for such
kwargs: dict = field(default_factory=lambda: {})
experimental: dict | ModelExperimentalSettings | None = None # experimental settings
def get(self, name=None):
return [ self ] if not name or self.name == name else []
def loss_factor(self, k):
return self.loss_factors.get(k, 0.0)
@property
def max_levels(self):
# return RVQ level range
if self.experimental is not None and self.experimental.rvq_level_range:
return self.experimental.rvq_level_range[-1]
return self.resp_levels
@property
# required for fp8 as the lengths needs to be divisible by 8
def input_alignment(self):
return 8 if cfg.optimizations.fp8 else 0
@property
def full_name(self):
name = [ self.name ]
if isinstance(self.size, dict):
if hasattr(self.size, "label") and self.size['label']:
name.append(f"{self.size['label']}")
elif isinstance(self.size, str) and self.size not in ["full","extended"]:
name.append(self.size)
if self.experts > 1:
name.append(f'{self.experts}x'+self.arch_type.replace("/", "-"))
else:
name.append(self.arch_type.replace("/", "-"))
if cfg.optimizations.bitnet:
name.append("bitnet")
name.append(f'{self.resp_levels}')
return "-".join(name)
@property
def tokens(self):
return self.audio_tokens
@property
def audio_tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "audio_tokens"):
return self.size['audio_tokens']
return 1024
@property
def text_tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "text_tokens"):
return self.size['text_tokens']
return 256
@property
def dim(self):
if isinstance(self.size, dict) and hasattr(self.size, "dim"):
return self.size['dim']
if isinstance(self.size, float):
return math.floor(1024 * self.size)
if self.size == "quarter":
return 256
if self.size == "half":
return 512
return 1024
@property
def heads(self):
if isinstance(self.size, dict) and hasattr(self.size, "heads"):
return self.size['heads']
if isinstance(self.size, float):
return math.floor(16 * self.size)
if self.size == "quarter":
return 4
if self.size == "half":
return 8
return 16
@property
def layers(self):
if isinstance(self.size, dict) and hasattr(self.size, "layers"):
return self.size['layers']
if self.size == "double":
return 24
if self.size == "extended":
return 16
return 12
@property
def activation_checkpointing(self):
return cfg.trainer.activation_checkpointing
@property
def gradient_checkpointing(self):
return cfg.trainer.gradient_checkpointing
@property
def lora_policy(self):
include = ["model"] # by default only adapt the main model (not embeddings nor classifier/output projection/LM head/whatever)
exclude = []
if self.arch_type == "llama":
include = ["self_attn", "mlp"] # target only the attention + mlp
exclude = ["self_attn.k_proj"] # common literature says to ignore it
if self.arch_type == "retnet":
include = ["layers."] # target the core layers of the RetNet and ignore the auxiliary stuff
exclude = ["retention.k_proj"] # attention-based transformers ignore the K, so might as well ignore it for the retnet
return dict(include=include, exclude=exclude)
# to-do: derive default arguments from here
@property
def get_kwargs(self, type):
return self.kwargs
# should be renamed to Adapters
@dataclass()
class LoRA:
name: str = "lora" # vanity name
# to-do: find sane default values
rank: int = 128 # rank for the LoRA
alpha: int = 128 # rank for the LoRA
training: bool = True #
embeddings: bool = False # train the embedding too
parametrize: bool = False # whether to use the parameterized pathway for LoRAs or not
rvq_levels: list[int] = field(default_factory=lambda: []) # determines RVQ levels to activate the LoRA
path: Path | None = None
@property
def full_name(self):
name = [ self.name, f"r{self.rank}", f"a{self.alpha}" ]
return "-".join(name)
# actually not needed anymore
def active_level( self, level ):
if not self.rvq_levels:
return True
return level in self.rvq_levels
@dataclass()
class Hyperparameters:
batch_size: int = 8 # number of samples per training batch
gradient_accumulation_steps: int = 32 # number of steps to accumulate gradients before updating
gradient_clipping: int | float = 1.0 # largest size a gradient norm can be
optimizer: str = "Adamw" # optimizer to use, should be 'Prodigyopt" now
optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
learning_rate: float = 3.25e-4 # should be 1.0 for ProdigyOpt
warmup_steps: int = 0 # number of steps to warm up the optimizer before performing updates, I think, this is just passed to deepspeed
scheduler: str = "" # scheduler to use, currently don't ever use one so this doesn't really matter
scheduler_type: str = "" # deprecated
scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
autotune: bool = False # to do deepspeed's autotuning
autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
torch_optimizer: bool = False # if the requested optimizer is torch-derived rather than deepspeed supplied
torch_scheduler: bool = False # if the requested scheduler is torch-derived rather than deepspeed-supplied
@dataclass()
class Evaluation:
batch_size: int = 64 # number of samples per batch during eval / val
frequency: int = 250 # do eval / val every X iterations
size: int = 64 # number of samples to generate during eval / val
kwargs: dict = field(default_factory=lambda: {}) # inferencing kwargs
# necessary in order to make it not confusing with requiring not-directyl exposed arguments passed to the model
@cached_property
def ar_kwargs( self ):
return dict(
max_steps=self.kwargs.get("max_ar_steps", 500),
temperature=self.kwargs.get("ar_temperature", 1.0),
min_temperature=self.kwargs.get("min_ar_temperature", -1),
top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0), min_p=self.kwargs.get("min_p", 0.0),
repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0),
length_penalty=self.kwargs.get("length_penalty", 0),
beam_width=self.kwargs.get("beam_width", 0),
mirostat_tau=self.kwargs.get("mirostat_tau", 0),
mirostat_eta=self.kwargs.get("mirostat_eta", 0),
dry_multiplier=self.kwargs.get("dry_multiplier", 0),
dry_base=self.kwargs.get("dry_base", 0),
dry_allowed_length=self.kwargs.get("dry_allowed_length", 0),
entropix=self.kwargs.get("entropix_sampling", False),
)
@cached_property
def nar_kwargs( self ):
return dict(
max_levels=self.kwargs.get("max_nar_levels", 0),
temperature=self.kwargs.get("nar_temperature", 0.0),
min_temperature=self.kwargs.get("min_nar_temp", -1),
top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0.0), min_p=self.kwargs.get("min_p", 0.0),
repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0.0),
)
@dataclass()
class DeepSpeed:
zero_optimization_level: int = 0 # doesn't seem to work
use_compression_training: bool = False # cope
compression_bits: int = 8 # cope
inferencing: bool = False # for using DeepSpeed's inferencing wrapper instead
amp: bool = False # use DeepSpeed's AMP (requires some other package installed apparently)
loss_scale_window: int = 100
min_loss_scale: float = 8192.0
config: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
@cached_property
def ds_cfg(self):
optimizer_params = cfg.hyperparameters.optimizer_params
if 'lr' not in optimizer_params:
optimizer_params["lr"] = cfg.hyperparameters.learning_rate,
scheduler_params = cfg.hyperparameters.scheduler_params
if 'warmup_num_steps' not in scheduler_params:
scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps
if 'total_num_steps' not in scheduler_params:
scheduler_params['total_num_steps'] = cfg.trainer.iterations
autotune_params = cfg.hyperparameters.autotune_params
if "enabled" not in autotune_params:
autotune_params['enabled'] = True
if "results_dir" not in autotune_params:
autotune_params['results_dir'] = str( cfg.rel_path / "autotune" / "results" )
if "exps_dir" not in autotune_params:
autotune_params['exps_dir'] = str( cfg.rel_path / "autotune" / "exps_" )
# DeepSpeed fp16 is incompatible with its AMP
if cfg.trainer.weight_dtype.lower() == "float16":
self.amp = False
# disable local AMP
if self.amp:
cfg.trainer.amp = False
ds_cfg = {
"train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size,
"gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps,
"optimizer": {
"type": cfg.hyperparameters.optimizer,
"params": optimizer_params,
} if not cfg.hyperparameters.torch_optimizer else None,
"scheduler": {
"type": cfg.hyperparameters.scheduler,
"params": scheduler_params,
} if not cfg.hyperparameters.torch_scheduler else None,
"gradient_clipping": cfg.hyperparameters.gradient_clipping,
"fp16": {
"enabled": cfg.trainer.weight_dtype.lower() == "float16",
"auto_cast": True, # ???
"loss_scale_window": self.loss_scale_window, # raise every 100 consecutive good steps
"min_loss_scale": self.min_loss_scale, # loss scale hitting 8K fries the model, 16K is fine but 32K is comfy
"loss_scale": 0.0 if cfg.trainer.scale_loss else 1.0,
},
"bf16": {
"enabled": cfg.trainer.weight_dtype.lower() == "bfloat16",
},
"amp": {
"enabled": self.amp,
},
"autotuning": autotune_params if cfg.hyperparameters.autotune else None,
"compression_training": {
"weight_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"wq1": {
"params": {
"start_bits": self.compression_bits,
"target_bits": self.compression_bits,
"quantization_period": 0
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
"activation_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"aq1": {
"params": {
"bits": self.compression_bits,
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
} if self.use_compression_training else None,
"zero_optimization": {
"stage": self.zero_optimization_level,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"sub_group_size": 5e8,
"round_robin_gradients": True,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
},
"zero_quantized_weights": self.use_compression_training,
"zero_hpz_partition_size": world_size(),
"zero_quantized_gradients": self.use_compression_training,
} if self.zero_optimization_level > 0 else None,
"comms_logger": {
"enabled": False
}
}
null_keys = [ k for k in ds_cfg if not ds_cfg[k] ]
for k in null_keys:
del ds_cfg[k]
if os.path.exists("./data/ds_config.json"):
ds_cfg.update(json.loads(open("./data/ds_config.json", "r", encoding="utf-8")).read())
else:
ds_cfg.update(self.config)
return ds_cfg
@dataclass()
class Trainer:
iterations: int = 1_000_000 # maximum iterations to train
save_tag: str = "step" # name to save checkpoints under, "step" will save as current step count
load_tag: str | None = None # tag to load checkpoint from; if None: will check against contents of `./ckpt/{model-name}/latest` for the checkpoint name
save_on_oom: bool = True # save if an OOM error is raised
save_on_quit: bool = True # save when quitting training
export_on_save: bool = False # export weights to local `fp32.pth` state_dict on saving a checkpoint
export_on_quit: bool = False # export weights to local `fp32.pth` state_dict on quitting training
save_frequency: int = 100 # frequency to save every X iterations
keep_last_checkpoints: int = 0 # number of checkpoints to keep, prunes oldest ones
load_state_dict: bool = False # loads `fp32.pth` state_dict, will automatically be done if a checkpoint is not found but `fp32.pth` exists
load_states: bool = True #
strict_loading: bool = False # sets strict_loading=True when loading the state dict
load_module_only: bool = False #
restart_step_count: bool = False # clears the training stats when loading a checkpoint
resize_modules: bool = False # automatically resizes
activation_checkpointing: bool | None = None # deprecated, should technically be used for only on activations and not the entire gradients, but HF only has gradient checkpointing
gradient_checkpointing: bool = True # enables gradient checkpointing to save VRAM at the cost of slightly reduced performance when training
check_for_oom: bool = True # checks for OOMs thrown during forward/backwards
gc_mode: str | None = None # deprecated, but marks when to do GC
wandb: bool = False # use wandb, if available
weight_dtype: str = "float16" # dtype to have the model under
amp: bool = False # automatic mixed precision
ddp: bool = False # torch's internal DDP, automatically set if local backend is used and multiple GPUs are requested
#scale_loss: bool = False # whether to perform loss scaling (for FP16 training) (it actually seems more harmful than not for this specific workload)
load_webui: bool = False # load the web UI to allow inferencing during training, to-do: actually make this work
backend: str = "local" # training backend to use. currently supports "local" | "deepspeed"
deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed) # deepspeed settings
@cached_property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
@cached_property
def scale_loss(self):
# currently cannot feasibly apply loss scaling with DeepSpeed backend (it can handle it itself anyways)
return self.dtype == torch.float16
@dataclass()
class Inference:
backend: str = "local" # backend to use when inferencing
weight_dtype: str = "float16" # dtype to load the model under
amp: bool = True # automatic mixed precision during inferencing
normalize: bool = False # to-do: actually normalize input / output audio, I believe this might cause issues though
@property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "int8":
return torch.int8
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
@dataclass()
class Optimizations:
injects: bool = False # overwrites default torch classes (not recommended)
replace: bool = False # replaces modules in place with the optimized version (recommended)
compile: bool | str = False # runs torch.compile on the model
linear: bool = True # inject/replace linear for BnB
embedding: bool = True # inject/replace embedding for BnB
optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation)
bitsandbytes: bool = False # use bitsandbytes
dadaptation: bool = False # use dadaptation optimizer
bitnet: bool = False # use bitnet
fp8: bool = False # use fp8
# to-do: validate this madness works still, I don't remember what schizodemon told me to do this
model_offloading: dict | None = None # automatically splits the model over a list of devices
# example: {"include":["model"], "limits": [ (6 * 1024) * (1024 ** 2), -1 ]} will have the GPU capped to 6GiB, and offload the remaining layers to CPU
# example: {"include":["model"], "device": ["cuda:0", "cuda:1"], "limits": [ 0.5, 0.5 ]} will have the GPU 1 try and use 50% of the model, and GPU 2 try and use the other 50%
# | {"assign": [[ f'layers.{i}.' for i in range(0,6) ], [ f'layers.{i}.' for i in range(6,12) ]]} will assign layers 0-5 to device 1, and 6-12 to device 2
tensorrt: bool = False
unsloth: bool = False # unsloth gradient checkpointing (it just offloads tensors to the CPU during backwards, I don't think it's significant enough to bother with on small models)
@dataclass()
class Config(BaseConfig):
device: str = "cuda" # target device
mode: str = "training" # "inferencing"
experimental: bool = False # debug flag
silent_errors: bool = False # if False, raise exceptions on errors that could silently lead to problems, if True ignore them
dataset: Dataset = field(default_factory=lambda: Dataset)
models: dict | list | None = field(default_factory=lambda: [])
loras: dict | list | None = field(default_factory=lambda: [])
hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters)
evaluation: Evaluation = field(default_factory=lambda: Evaluation)
trainer: Trainer = field(default_factory=lambda: Trainer)
inference: Inference = field(default_factory=lambda: Inference)
optimizations: Optimizations = field(default_factory=lambda: Optimizations)
tokenizer: str | None = None # tokenizer class
tokenizer_path: str = "./tokenizer.json" # tokenizer path
sample_rate: int = 24_000 # sample rate the model expects
audio_backend: str = "vocos" # audio backend to use "encodec" | "vocos" | "dac""
weights_name: str = "fp32"
weights_format: str = "sft" # "pth" | "sft"
supported_weights_formats: list[str] = field(default_factory=lambda: ["sft", "safetensors", "pt", "pth"])
def set_audio_backend(self, audio_backend):
cfg.audio_backend = audio_backend
audio_extension = None
if audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
cfg.sample_rate = 24_000
cfg.model.resp_levels = 8
elif audio_backend == "dac":
audio_extension = ".dac"
cfg.sample_rate = 44_100
cfg.model.resp_levels = 9
elif cfg.audio_backend == "audiodec":
audio_extension = ".dec"
sample_rate = 48_000
cfg.model.resp_levels = 8 # ?
else:
raise Exception(f"Unknown audio backend: {audio_backend}")
@property
def audio_backend_extension(self):
audio_extension = None
if self.audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
elif self.audio_backend == "dac":
audio_extension = ".dac"
elif self.audio_backend == "audiodec":
audio_extension = ".dec"
return audio_extension
@property
def model(self):
for i, model in enumerate(self.models):
if model.training:
return model
return self.models[0] if len(self.models) > 0 else None
# should be renamed to adapters
@property
def lora(self):
for i, lora in enumerate(self.loras):
if lora.training:
return lora
return self.loras[0] if len(self.loras) > 0 else None
@property
def distributed(self):
return world_size() > 1
@cached_property
def get_spkr(self):
return eval(self.dataset.speaker_name_getter)
@cached_property
def get_spkr_group(self):
return eval(self.dataset.speaker_group_getter)
"""
@cached_property
def diskcache(self):
if self.yaml_path is not None and self.dataset.cache:
return diskcache.Cache(self.cache_dir).memoize
return lambda: lambda x: x
"""
# this gets called from vall_e.inference
def load_yaml( self, config_path ):
tmp = Config.from_yaml( config_path )
self.__dict__.update(tmp.__dict__)
def load_model( self, config_path, lora_path=None ):
tmp = Config.from_model( config_path, lora_path )
self.__dict__.update(tmp.__dict__)
def load_hdf5( self, write=False ):
if hasattr(self, 'hdf5'):
self.hdf5.close()
if self.distributed:
self.dataset.hdf5_flag = "r"
try:
self.hdf5 = h5py.File(f'{self.rel_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset
except Exception as e:
_logger.warning(f"Error while opening HDF5 file: {self.rel_path}/{self.dataset.hdf5_name}: {str(e)}")
self.dataset.use_hdf5 = False
# a very icky way to handle wildcard expansions
def expand( self, path ):
if not isinstance( path, Path ):
path = Path(path)
# do not glob
if "*" not in str(path):
return [ path ]
metadata_parent = cfg.metadata_dir / path.parent
data_parent = cfg.data_dir / path.parent
if metadata_parent.exists():
return [ path.parent / child.stem for child in Path(metadata_parent).glob(path.name) ]
if data_parent.exists():
return [ path.parent / child.name for child in Path(data_parent).glob(path.name) ]
# return an empty list
if self.silent_errors:
return []
# raise an error to avoid headaches
raise Exception(f'Cannot unglob requested path: {path}')
def format( self, training=True ):
if isinstance(self.dataset, type):
self.dataset = dict()
if isinstance(self.models, type):
self.models = dict()
if isinstance(self.loras, type):
self.loras = dict()
if isinstance(self.hyperparameters, type):
self.hyperparameters = dict()
if isinstance(self.evaluation, type):
self.evaluation = dict()
if isinstance(self.trainer, type):
self.trainer = dict()
if isinstance(self.inference, type):
self.inference = dict()
if isinstance(self.optimizations, type):
self.optimizations = dict()
if isinstance( self.dataset, dict ):
self.dataset = Dataset(**self.dataset)
if isinstance( self.hyperparameters, dict ):
self.hyperparameters = Hyperparameters(**self.hyperparameters)
if isinstance( self.evaluation, dict ):
self.evaluation = Evaluation(**self.evaluation)
if isinstance( self.trainer, dict ):
self.trainer = Trainer(**self.trainer)
if isinstance( self.trainer.deepspeed, dict ):
self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed)
if isinstance( self.inference, dict ):
self.inference = Inference(**self.inference)
if isinstance( self.optimizations, dict ):
self.optimizations = Optimizations(**self.optimizations)
# convert to expanded paths
self.dataset.training = [ self.expand(dir) for dir in self.dataset.training ]
self.dataset.validation = [ self.expand(dir) for dir in self.dataset.validation ]
self.dataset.noise = [ self.expand(dir) for dir in self.dataset.noise ]
# flatten
self.dataset.training = list(itertools.chain.from_iterable(self.dataset.training))
self.dataset.validation = list(itertools.chain.from_iterable(self.dataset.validation))
self.dataset.noise = list(itertools.chain.from_iterable(self.dataset.noise))
# do cleanup
for model in self.models:
if not isinstance( model, dict ):
continue
# to-do: prune unused keys in here too automatically
if "experimental" not in model or not model["experimental"]:
model["experimental"] = {}
if "prom_levels" in model:
_logger.warning(f"Deprecated flag found: {'cfg.model.prom_levels'}")
del model["prom_levels"]
if "interleave" in model:
_logger.warning(f"Deprecated flag found: {'cfg.model.interleave'}")
del model["interleave"]
if "p_rvq_levels" in model["experimental"]:
model["experimental"]["rvq_levels_p"] = model["experimental"]["p_rvq_levels"]
del model["experimental"]["p_rvq_levels"]
if "p_len_train" in model["experimental"]:
del model["experimental"]["p_len_train"]
if "masking_ratio_fixed" in model["experimental"]:
del model["experimental"]["masking_ratio_fixed"]
self.models = [ Model(**model) if isinstance(model, dict) else model for model in self.models ]
self.loras = [ LoRA(**lora) if isinstance(lora, dict) else lora for lora in self.loras ]
if not self.models:
self.models = [ Model() ]
for model in self.models:
if isinstance( model.experimental, dict ):
model.experimental = ModelExperimentalSettings(**model.experimental)
if model.teacher:
model.training = False
if model.training:
model.teacher = False
if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler:
self.hyperparameters.scheduler = self.hyperparameters.scheduler_type
self.hyperparameters.scheduler_type = ""
# do not combine the two
if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation:
self.hyperparameters.scheduler = ""
if self.hyperparameters.scheduler == "":
self.hyperparameters.torch_scheduler = True
if self.trainer.backend == "local" and self.distributed:
self.trainer.ddp = True
if self.trainer.activation_checkpointing is not None:
self.trainer.gradient_checkpointing = self.trainer.activation_checkpointing
if not training:
self.dataset.use_hdf5 = False
# load our HDF5 file if requested here
if self.dataset.use_hdf5:
self.load_hdf5()
# load tokenizer
if self.tokenizer == "naive":
self.tokenizer = NaiveTokenizer()
else:
from transformers import PreTrainedTokenizerFast
tokenizer_path = self.rel_path / self.tokenizer_path
# deduce path if a local copy is not provided
if not tokenizer_path.exists():
tokenizer_path = Path("./data/") / self.tokenizer_path
if not self.silent_errors and not tokenizer_path.exists():
raise Exception(f'Tokenizer path not found: {tokenizer_path}')
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(tokenizer_path))
# Preserves the old behavior
class NaiveTokenizer:
def get_vocab( self ):
"""
if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5:
return json.loads( cfg.hdf5['symmap'].asstr()[()] )
"""
return {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '': 179, '': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, '': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, '': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, '': 220, 'eˈ': 221, 'ʍ': 222, '': 223, '': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228}
@cached_property
def _bos_token( self ):
return self.get_vocab()["<s>"]
@cached_property
def _eos_token( self ):
return self.get_vocab()["</s>"]
def encode( self, s ):
symmap = self.get_vocab()
phones = " ".join( list(s) )
# do merge
for merge in [ "\u02C8", "\u02CC", "\u02D0" ]:
phones = phones.replace( f' {merge}', merge )
phones = phones.split(" ")
# cleanup
phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ]
# add bos / eos
phones = ["<s>"] + [ " " if not p else p for p in phones ] + ["</s>"]
# tokenize
return [*map(symmap.get, phones)]
def decode( self, t ):
s = ""
symmap = self.get_vocab()
reverse_symmap = {}
for k, v in symmap.items():
reverse_symmap[v] = k
for i, token in enumerate( t ):
s += reverse_symmap[token]
return s
_logger = logging.getLogger(__name__)
cfg = Config.from_cli()
# some safety for remapping deprecated formats and re-coercing uninitialized properties into actual types
try:
cfg.format()
except Exception as e:
if not cfg.silent_errors:
raise e # throw an error because I'm tired of silent errors messing things up for me
_logger.error(f"Error while parsing config YAML: {str(e)}")
if __name__ == "__main__":
print(cfg)