vall-e/vall_e/engines/__init__.py

174 lines
4.8 KiB
Python
Executable File

from ..config import cfg
from ..utils.distributed import fix_unset_envs
fix_unset_envs()
if cfg.trainer.backend == "deepspeed":
from .deepspeed import Engine
elif cfg.trainer.backend == "local":
from .base import Engine
from .base import Engines, TrainFeeder, default_feeder, Engine as _Engine
from ..models import get_models
from ..utils import wrapper as ml
import torch
import re
deepspeed_available = False
try:
import deepspeed
deepspeed_available = True
except Exception as e:
pass
from functools import cache
@cache
def load_engines(training=True):
models = get_models(cfg.models.get(), training=training)
engines = dict()
for name, model in models.items():
optimizer = None
lr_scheduler = None
inferencing = cfg.mode == "inferencing" or not model._cfg.training
backend = cfg.inference.backend if inferencing else cfg.trainer.backend
dtype = cfg.inference.dtype if inferencing else cfg.trainer.dtype
amp = cfg.inference.amp if inferencing else cfg.trainer.amp
loads_state_dict = cfg.trainer.load_state_dict or inferencing
engine_class = _Engine if backend == "local" or inferencing else Engine
if inferencing:
model._cfg.training = False
if (cfg.bitsandbytes.enabled and cfg.bitsandbytes.replace) or (cfg.fp8.enabled):
model.model = ml.replace_linear( model.model )
if backend == "local" or (backend == "deepspeed" and cfg.hyperparameters.torch_optimizer):
optimizer_class = None
params = {
"lr": cfg.hyperparameters.learning_rate,
}
if cfg.hyperparameters.optimizer.lower() == "adamw":
params["betas"] = (0.9, 0.96)
params["eps"] = 1e-07
params["weight_decay"] = 0.01
optimizer_class = ml.AdamW
elif cfg.hyperparameters.optimizer.lower() == "sgd":
optimizer = ml.SGD
elif cfg.hyperparameters.optimizer.lower() == "prodigy":
optimizer_class = ml.Prodigy
params['d_coef'] = params['lr']
params['lr'] = 1.0
else:
raise ValueError(f'Optimizer specified not implemented: {cfg.hyperparameters.optimizer}')
params.update(cfg.hyperparameters.optimizer_params)
optimizer = optimizer_class(
[ param for name, param in model.named_parameters() if name not in model._cfg.frozen_params ],
**params,
)
# set up our LR scheduler here
if inferencing:
optimizer = None
lr_scheduler = None
# automatically load from state dict if one is provided, but no DeepSpeed checkpoint is present
load_path = cfg.ckpt_dir / name / "fp32.pth"
if not loads_state_dict and backend == "deepspeed" and not (cfg.ckpt_dir / name / "latest").exists() and load_path.exists():
print("DeepSpeed checkpoint missing, but weights found.")
loads_state_dict = True
stats = None
if loads_state_dict:
state = torch.load(load_path, map_location=torch.device(cfg.device))
# state dict is not just the module, extract the extra trainer details
if "stats" in state:
stats = state["stats"]
if "module" in state:
state = state["module"]
# maintain compat if I change variable names
insert = {}
erase = []
for k in state.keys():
key = re.sub(r'^retnet\.', "model.", k)
if k != key:
insert[key] = state[k]
erase.append(k)
for k in insert.keys():
state[k] = insert[k]
for k in erase:
del state[k]
model.load_state_dict(state, strict=cfg.trainer.strict_loading)
# deepspeed inferencing
if backend == "local" and inferencing and deepspeed_available and cfg.trainer.deepspeed.inferencing: #and sys.platform.startswith("win"):
engine_class = _Engine
model = deepspeed.init_inference(model=model, mp_size=1, replace_with_kernel_inject=True, dtype=dtype if not amp else torch.float32).module
# use base engine if requested
engines[name] = engine_class(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
_cfg=model._cfg,
stats=stats
)
engines = Engines(engines)
engines.setup()
if not cfg.trainer.load_state_dict:
engines.load_checkpoint()
# freeze requested params
for name, engine in engines.items():
engine.freeze(freeze_all=False)
# copy embeddings if requested
if cfg.models._embeddings is not None:
embeddings_path = cfg.relpath / cfg.models._embeddings
if embeddings_path.exists():
embeddings = torch.load(embeddings_path, map_location=torch.device(cfg.device))
if "module" in embeddings:
embeddings = embeddings["module"]
frozen_params = set()
for k in list(embeddings.keys()):
if re.findall(r'_emb\.', k):
frozen_params.add(k)
else:
del embeddings[k]
engine.module.load_state_dict(embeddings, strict=False)
# there's definitely a much better way but I can't be assed at the moment
for name, param in engine.module.named_parameters():
if name not in frozen_params:
continue
param.requires_grad_(False)
engine._frozen_params.add(param)
#do_gc()
return engines