vall-e/vall_e/utils/utils.py

167 lines
4.2 KiB
Python
Executable File

"""
# https://github.com/enhuiz/pytorch-training-utilities
"""
from .distributed import global_rank, local_rank, global_leader_only
import gc
import logging
import pandas as pd
import re
import torch
from coloredlogs import ColoredFormatter
from logging import StreamHandler
from pathlib import Path
from torch import Tensor, nn
from tqdm.auto import tqdm
from typing import Callable, TypeVar, overload
T = TypeVar("T")
def truncate_json( str ):
def fun( match ):
return "{:.4f}".format(float(match.group()))
return re.sub(r"\d+\.\d{8,}", fun, str)
def do_gc():
gc.collect()
torch.cuda.empty_cache()
def flatten_dict(d):
records = pd.json_normalize(d).to_dict(orient="records")
return records[0] if records else {}
def _get_named_modules(module, attrname):
for name, module in module.named_modules():
if hasattr(module, attrname):
yield name, module
def gather_attribute(module, attrname, delete=True, prefix=True):
ret = {}
for name, module in _get_named_modules(module, attrname):
ret[name] = getattr(module, attrname)
if delete:
try:
delattr(module, attrname)
except Exception as e:
raise RuntimeError(f"{name} {module} {attrname}") from e
if prefix:
ret = {attrname: ret}
ret = flatten_dict(ret)
# remove consecutive dots
ret = {re.sub(r"\.+", ".", k): v for k, v in ret.items()}
return ret
def dispatch_attribute(
module,
attrname,
value,
filter_fn: Callable[[nn.Module], bool] | None = None,
):
for _, module in _get_named_modules(module, attrname):
if filter_fn is None or filter_fn(module):
setattr(module, attrname, value)
def load_state_dict_non_strict(model, state_dict, logger=None):
model_state_dict = model.state_dict()
provided = set(state_dict)
required = set(model_state_dict)
agreed = provided & required
for k in list(agreed):
if model_state_dict[k].shape != state_dict[k].shape:
agreed.remove(k)
provided.remove(k)
state_dict = {k: state_dict[k] for k in agreed}
if logger is not None and (diff := provided - required):
logger.warning(
f"Extra parameters are found. "
f"Provided but not required parameters: \n{diff}."
)
if logger is not None and (diff := required - provided):
logger.warning(
f"Some parameters are missing. "
f"Required but not provided parameters: \n{diff}."
)
model.load_state_dict(state_dict, strict=False)
class TqdmLoggingHandler(logging.Handler):
def __init__(self, level=logging.INFO):
super().__init__(level)
def emit(self, record):
try:
msg = self.format(record)
tqdm.write(msg)
self.flush()
except Exception as e:
self.handleError(record)
@global_leader_only
def setup_logging(log_dir: str | Path | None = "log", log_level="info"):
handlers = []
#stdout_handler = StreamHandler()
stdout_handler = TqdmLoggingHandler()
stdout_handler.setLevel(logging.INFO)
formatter = ColoredFormatter(
f"%(asctime)s - %(name)s - %(levelname)s - GR={global_rank()};LR={local_rank()} - \n%(message)s"
)
stdout_handler.setFormatter(formatter)
handlers.append(stdout_handler)
if log_dir is not None:
filename = Path(log_dir) / f"log.txt"
filename.parent.mkdir(parents=True, exist_ok=True)
file_handler = logging.FileHandler(filename, mode="a")
file_handler.setLevel(logging.DEBUG)
handlers.append(file_handler)
logging.basicConfig(
level=logging.getLevelName(log_level.upper()),
format="%(asctime)s - %(name)s - %(levelname)s - \n%(message)s",
handlers=handlers,
)
@overload
def tree_map(fn: Callable, x: list[T]) -> list[T]:
...
@overload
def tree_map(fn: Callable, x: tuple[T]) -> tuple[T]:
...
@overload
def tree_map(fn: Callable, x: dict[str, T]) -> dict[str, T]:
...
@overload
def tree_map(fn: Callable, x: T) -> T:
...
def tree_map(fn: Callable, x):
if isinstance(x, list):
x = [tree_map(fn, xi) for xi in x]
elif isinstance(x, tuple):
x = (tree_map(fn, xi) for xi in x)
elif isinstance(x, dict):
x = {k: tree_map(fn, v) for k, v in x.items()}
elif isinstance(x, Tensor):
x = fn(x)
return x
def to_device(x: T, device) -> T:
return tree_map(lambda t: t.to(device), x)