vall-e/vall_e/emb/qnt.py

548 lines
16 KiB
Python
Executable File

from ..config import cfg
import argparse
import random
import torch
import torchaudio
from functools import cache
from pathlib import Path
from typing import Union
from einops import rearrange
from torch import Tensor
from tqdm import tqdm
try:
from encodec import EncodecModel
from encodec.utils import convert_audio
except Exception as e:
cfg.inference.use_encodec = False
try:
from vocos import Vocos
except Exception as e:
cfg.inference.use_vocos = False
try:
from dac import DACFile
from audiotools import AudioSignal
from dac.utils import load_model as __load_dac_model
"""
Patch decode to skip things related to the metadata (namely the waveform trimming)
So far it seems the raw waveform can just be returned without any post-processing
A smart implementation would just reuse the values from the input prompt
"""
from dac.model.base import CodecMixin
@torch.no_grad()
def CodecMixin_decompress(
self,
obj: Union[str, Path, DACFile],
verbose: bool = False,
) -> AudioSignal:
self.eval()
if isinstance(obj, (str, Path)):
obj = DACFile.load(obj)
original_padding = self.padding
self.padding = obj.padding
range_fn = range if not verbose else tqdm.trange
codes = obj.codes
original_device = codes.device
chunk_length = obj.chunk_length
recons = []
for i in range_fn(0, codes.shape[-1], chunk_length):
c = codes[..., i : i + chunk_length].to(self.device)
z = self.quantizer.from_codes(c)[0]
r = self.decode(z)
recons.append(r.to(original_device))
recons = torch.cat(recons, dim=-1)
recons = AudioSignal(recons, self.sample_rate)
# to-do, original implementation
if not hasattr(obj, "dummy") or not obj.dummy:
resample_fn = recons.resample
loudness_fn = recons.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if recons.signal_duration >= 10 * 60 * 60:
resample_fn = recons.ffmpeg_resample
loudness_fn = recons.ffmpeg_loudness
recons.normalize(obj.input_db)
resample_fn(obj.sample_rate)
recons = recons[..., : obj.original_length]
loudness_fn()
recons.audio_data = recons.audio_data.reshape(
-1, obj.channels, obj.original_length
)
self.padding = original_padding
return recons
CodecMixin.decompress = CodecMixin_decompress
except Exception as e:
cfg.inference.use_dac = False
print(str(e))
# uses https://github.com/facebookresearch/AudioDec/
# I have set up a pip-ify'd version with the caveat of having to manually handle downloading the checkpoints with a wget + unzip
# I was not happy with testing, it sounded rather mediocre.
"""
try:
from audiodec.utils.audiodec import AudioDec, assign_model as _audiodec_assign_model
except Exception as e:
cfg.inference.use_audiodec = False
print(str(e))
"""
@cache
def _load_encodec_model(device="cuda", levels=cfg.model.max_levels):
assert cfg.sample_rate == 24_000
# too lazy to un-if ladder this shit
bandwidth_id = 6.0
if levels == 2:
bandwidth_id = 1.5
elif levels == 4:
bandwidth_id = 3.0
elif levels == 8:
bandwidth_id = 6.0
# Instantiate a pretrained EnCodec model
model = EncodecModel.encodec_model_24khz()
model.set_target_bandwidth(bandwidth_id)
model = model.to(device)
model = model.eval()
# extra metadata
model.bandwidth_id = bandwidth_id
model.sample_rate = cfg.sample_rate
model.normalize = cfg.inference.normalize
model.backend = "encodec"
return model
@cache
def _load_vocos_model(device="cuda", levels=cfg.model.max_levels):
assert cfg.sample_rate == 24_000
model = Vocos.from_pretrained("charactr/vocos-encodec-24khz")
model = model.to(device)
model = model.eval()
# too lazy to un-if ladder this shit
bandwidth_id = 2
if levels == 2:
bandwidth_id = 0
elif levels == 4:
bandwidth_id = 1
elif levels == 8:
bandwidth_id = 2
# extra metadata
model.bandwidth_id = torch.tensor([bandwidth_id], device=device)
model.sample_rate = cfg.sample_rate
model.backend = "vocos"
return model
@cache
def _load_dac_model(device="cuda", levels=cfg.model.max_levels):
kwargs = dict(model_type="44khz",model_bitrate="8kbps",tag="latest")
if not cfg.variable_sample_rate:
# yes there's a better way, something like f'{cfg.sample.rate//1000}hz'
if cfg.sample_rate == 44_000 or cfg.sample_rate == 44_100: # because I messed up and had assumed it was an even 44K and not 44.1K
kwargs["model_type"] = "44khz"
elif cfg.sample_rate == 16_000:
kwargs["model_type"] = "16khz"
else:
raise Exception(f'unsupported sample rate: {cfg.sample_rate}')
model = __load_dac_model(**kwargs)
model = model.to(device)
model = model.eval()
# to revisit later, but experiments shown that this is a bad idea
if cfg.variable_sample_rate:
model.sample_rate = cfg.sample_rate
model.backend = "dac"
model.model_type = kwargs["model_type"]
return model
@cache
def _load_audiodec_model(device="cuda", model_name=None, levels=cfg.model.max_levels):
if not model_name:
model_name = "libritts_v1" if cfg.sample_rate == 24_000 else "vctk_v1"
sample_rate, encoder_checkpoint, decoder_checkpoint = _audiodec_assign_model(model_name)
model = AudioDec(tx_device=device , rx_device=device )
model.load_transmitter(encoder_checkpoint)
model.load_receiver(encoder_checkpoint, decoder_checkpoint)
model.backend = "audiodec"
model.sample_rate = sample_rate
return model
@cache
def _load_model(device="cuda", backend=None, levels=cfg.model.max_levels):
if not backend:
backend = cfg.audio_backend
if backend == "audiodec":
return _load_audiodec_model(device, levels=levels)
if backend == "dac":
return _load_dac_model(device, levels=levels)
if backend == "vocos":
return _load_vocos_model(device, levels=levels)
return _load_encodec_model(device, levels=levels)
def unload_model():
_load_model.cache_clear()
_load_encodec_model.cache_clear() # because vocos can only decode
@torch.inference_mode()
def decode(codes: Tensor, device="cuda", levels=cfg.model.max_levels, metadata=None):
# upcast so it won't whine
if codes.dtype == torch.int8 or codes.dtype == torch.int16 or codes.dtype == torch.uint8:
codes = codes.to(torch.int32)
# expand if we're given a raw 1-RVQ stream
if codes.dim() == 1:
codes = rearrange(codes, "t -> 1 1 t")
# expand to a batch size of one if not passed as a batch
# vocos does not do batch decoding, but encodec does, but we don't end up using this anyways *I guess*
# to-do, make this logical
elif codes.dim() == 2:
codes = rearrange(codes, "t q -> 1 q t")
assert codes.dim() == 3, f'Requires shape (b q t) but got {codes.shape}'
# load the model
model = _load_model(device, levels=levels)
# AudioDec uses a different pathway
if model.backend == "audiodec":
codes = codes.to( device=device )[0]
zq = model.rx_encoder.lookup( codes )
wav = model.decoder.decode(zq).squeeze(1)
return wav, model.sample_rate
# DAC uses a different pathway
if model.backend == "dac":
dummy = False
if metadata is None:
metadata = dict(
chunk_length= codes.shape[-1],
original_length=0,
input_db=-12,
channels=1,
sample_rate=model.sample_rate,
padding=True,
dac_version='1.0.0',
)
dummy = True
# generate object with copied metadata
artifact = DACFile(
codes = codes,
# yes I can **kwargs from a dict but what if I want to pass the actual DACFile.metadata from elsewhere
chunk_length = metadata["chunk_length"] if isinstance(metadata, dict) else metadata.chunk_length,
original_length = metadata["original_length"] if isinstance(metadata, dict) else metadata.original_length,
input_db = metadata["input_db"] if isinstance(metadata, dict) else metadata.input_db,
channels = metadata["channels"] if isinstance(metadata, dict) else metadata.channels,
sample_rate = metadata["sample_rate"] if isinstance(metadata, dict) else metadata.sample_rate,
padding = metadata["padding"] if isinstance(metadata, dict) else metadata.padding,
dac_version = metadata["dac_version"] if isinstance(metadata, dict) else metadata.dac_version,
)
artifact.dummy = dummy
# to-do: inject the sample rate encoded at, because we can actually decouple
return CodecMixin_decompress(model, artifact, verbose=False).audio_data[0], artifact.sample_rate
kwargs = {}
if model.backend == "vocos":
x = model.codes_to_features(codes[0])
kwargs['bandwidth_id'] = model.bandwidth_id
else:
# encodec will decode as a batch
x = [(codes.to(device), None)]
wav = model.decode(x, **kwargs)
# encodec will decode as a batch
if model.backend == "encodec":
wav = wav[0]
return wav, model.sample_rate
# huh
def decode_to_wave(resps: Tensor, device="cuda", levels=cfg.model.max_levels):
return decode(resps, device=device, levels=levels)
def decode_to_file(resps: Tensor, path: Path, device="cuda"):
wavs, sr = decode(resps, device=device)
torchaudio.save(str(path), wavs.cpu(), sr)
return wavs, sr
def _replace_file_extension(path, suffix):
return (path.parent / path.name.split(".")[0]).with_suffix(suffix)
# an experimental way to include "trained" embeddings from the audio backend itself
# > b-but why not just initialize the embedding weights to these instead of fetching them at r-runtime
# each audio backend does their "embeddings" a different way that isn't just a embedding weights
#
# this is overkill and I don't feel like this benefits anything, but it was an idea I had
# this only really works if the embedding dims match, and either a Linear to rescale would be needed or semi-erroneously just padding with 0s
@torch.inference_mode()
def encode_as_embedding(codes: Tensor, quant_level: int = 0, sums=False, device="cuda"):
model = _load_model(device)
codes = codes.to(device=device, dtype=torch.int32)
# yucky kludge
if sums:
if codes.dim() == 1:
codes = rearrange(codes, "t -> t 1")
if cfg.audio_backend == "dac":
x = []
for i in range(quant_level+1):
emb = model.quantizer.quantizers[i]
code = rearrange(codes[:, quant_level], "t -> 1 t")
xi = emb.decode_code(code)
xi = emb.out_proj(xi)
x.append( xi[0].t() )
return sum(x).detach()
raise Exception(f'Currently only DAC is supported')
if codes.dim() == 2:
codes = codes[:, quant_level]
codes = rearrange(codes, "t -> 1 t")
# dac conveniently has its dim = 1024
if cfg.audio_backend == "dac":
emb = model.quantizer.quantizers[quant_level]
x = emb.decode_code(codes)
x = emb.out_proj(x)
x = x[0].t().detach()
return x
"""
# vocos inconveniently has its dim = 128
elif cfg.audio_backend == "vocos":
x = model.codes_to_features(codes)
# encodec inconveniently has its dim = 300
elif cfg.audio_backend == "encodec":
...
"""
raise Exception(f'Currently only DAC is supported')
@torch.inference_mode()
def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", levels=cfg.model.max_levels, return_metadata=True):
# DAC uses a different pathway
if cfg.audio_backend == "dac":
model = _load_dac_model(device, levels=levels )
signal = AudioSignal(wav, sample_rate=sr)
if not isinstance(levels, int):
levels = 8 if model.model_type == "24khz" else None
with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp):
artifact = model.compress(signal, win_duration=None, verbose=False, n_quantizers=levels)
return artifact.codes if not return_metadata else artifact
# AudioDec uses a different pathway
if cfg.audio_backend == "audiodec":
model = _load_audiodec_model(device, levels=levels )
wav = wav.unsqueeze(0)
wav = convert_audio(wav, sr, model.sample_rate, 1)
wav = wav.to(device)
# wav = rearrange(wav, "t c -> t 1 c").to(device)
encoded = model.tx_encoder.encode(wav)
quantized = model.tx_encoder.quantize(encoded)
return quantized
# vocos does not encode wavs to encodecs, so just use normal encodec
model = _load_encodec_model(device, levels=levels)
wav = wav.unsqueeze(0)
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
wav = wav.to(device)
with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp):
encoded_frames = model.encode(wav)
qnt = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # (b q t)
return qnt
def encode_from_files(paths, device="cuda"):
tuples = [ torchaudio.load(str(path)) for path in paths ]
wavs = []
main_sr = tuples[0][1]
for wav, sr in tuples:
assert sr == main_sr, "Mismatching sample rates"
if wav.shape[0] == 2:
wav = wav[:1]
wavs.append(wav)
wav = torch.cat(wavs, dim=-1)
return encode(wav, sr, device)
def encode_from_file(path, device="cuda"):
if isinstance( path, list ):
return encode_from_files( path, device )
else:
path = str(path)
wav, sr = torchaudio.load(path)
if wav.shape[0] == 2:
wav = wav[:1]
qnt = encode(wav, sr, device)
return qnt
"""
Helper Functions
"""
# trims from the start, up to `target`
def trim( qnt, target, reencode=False, device="cuda" ):
length = max( qnt.shape[0], qnt.shape[1] )
if target > 0:
start = 0
end = start + target
if end >= length:
start = length - target
end = length
# negative length specified, trim from end
else:
start = length + target
end = length
if start < 0:
start = 0
if not reencode:
return qnt[start:end] if qnt.shape[0] > qnt.shape[1] else qnt[:, start:end]
# trims on the waveform itself
# need to test
start = start / cfg.dataset.frames_per_second * cfg.sample_rate
end = end / cfg.dataset.frames_per_second * cfg.sample_rate
wav = decode(qnt, device=device)[0]
return encode(wav[start:end], cfg.sample_rate, device=device)[0].t()
# trims a random piece of audio, up to `target`
# to-do: try and align to EnCodec window
def trim_random( qnt, target ):
length = max( qnt.shape[0], qnt.shape[1] )
start = int(length * random.random())
end = start + target
if end >= length:
start = length - target
end = length
return qnt[start:end] if qnt.shape[0] > qnt.shape[1] else qnt[:, start:end]
# repeats the audio to fit the target size
def repeat_extend_audio( qnt, target ):
pieces = []
length = 0
while length < target:
pieces.append(qnt)
length += qnt.shape[0]
return trim(torch.cat(pieces), target)
# interleaves between a list of audios
# useful for interleaving silence
def interleave_audio( *args, audio=None ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
if audio is None:
return qnts
# interleave silence
# yes there's a better way
res = []
for i, qnt in enumerate(qnts):
res.append( qnt )
if i + 1 != len(qnts):
res.append( audio )
return res
# concats two audios together
def concat_audio( *args, reencode=False, device="cuda", levels=cfg.model.max_levels ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
# just naively combine the codes
if not reencode:
return torch.concat( qnts )
decoded = [ decode(qnt, device=device, levels=levels)[0] for qnt in qnts ]
combined = torch.concat( decoded )
return encode(combined, cfg.sample_rate, device=device, levels=levels)[0].t()
# merges two quantized audios together
# requires re-encoding because there's no good way to combine the waveforms of two audios without relying on some embedding magic
def merge_audio( *args, device="cuda", scale=[], levels=cfg.model.max_levels ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
decoded = [ decode(qnt, device=device, levels=levels)[0] for qnt in qnts ]
# max length
max_length = max([ wav.shape[-1] for wav in decoded ])
for i, wav in enumerate(decoded):
delta = max_length - wav.shape[-1]
if delta <= 0:
continue
pad = torch.zeros( (1, delta), dtype=wav.dtype, device=wav.device )
decoded[i] = torch.cat( [ wav, pad ], dim=-1 )
# useful to adjust the volumes of each waveform
if len(scale) == len(decoded):
for i in range(len(scale)):
decoded[i] = decoded[i] * scale[i]
combined = sum(decoded) / len(decoded)
return encode(combined, cfg.sample_rate, device=device, levels=levels)[0].t()
"""
if __name__ == "__main__":
cfg.sample_rate = 48_000
cfg.audio_backend = "audiodec"
wav, sr = torchaudio.load("in.wav")
codes = encode( wav, sr ).t() # for some reason
print( "ENCODED:", codes.shape, codes )
wav, sr = decode( codes )
print( "DECODED:", wav.shape, wav )
torchaudio.save("out.wav", wav.cpu(), sr)
"""