vall-e/vall_e/models/ar.py

256 lines
8.1 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from ..config import cfg
from .base import Base, list_to_tensor, Categorical
import torch
from torch.nn.utils.rnn import pad_sequence
from einops import rearrange
from torch import Tensor
from tqdm import trange
class AR(Base):
@property
def causal(self):
return True
@property
def use_stop_token(self):
return True
@property
def norm_type(self):
return "ln"
@property
def arch_type(self) -> bool:
return cfg.models.ar.arch_type
@property
def n_prom_levels(self) -> int:
return cfg.models.prom_levels
@property
def n_resp_levels(self) -> int:
return cfg.models.ar.resp_levels
@property
def n_max_levels(self) -> int:
return cfg.models.max_levels
@property
def n_tasks(self) -> int:
return cfg.models.tasks
@property
def resp_loss_only(self):
return False
def _prune(self, l: Tensor):
indices = (l == self.stop_token).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
max_steps: int = 1000,
sampling_temperature: float = 1.0,
naive: bool = True,
):
if resps_list is not None:
resps_list = [r[..., 0] for r in resps_list] # guarantees we only have the first levels
return super().forward(
text_list=text_list,
proms_list=proms_list,
resps_list=self._unsqueeze_list(resps_list),
targ_list=resps_list,
quant_levels=None,
shift_targ_list=True,
return_all_resp=False,
)
device = text_list[0].device
resps_list: list[Tensor] = [
torch.zeros(0, device=device).to(torch.int16) for _ in text_list
]
stopped = torch.zeros(len(text_list), device=device).bool()
chunk_size = self.causal_chunk_size # don't really know what to do about this desu
state = None
start = 0
if naive:
for n in trange(max_steps // max(1, chunk_size)):
# get next in sequence
r, state = super().forward(
text_list,
proms_list,
self._unsqueeze_list(resps_list),
sampling_temperature=sampling_temperature,
state=state # if not naive else None,
)
# append outputted token
if self.causal_chunk_size > 0:
for i, ri in enumerate(r):
resps_list[i] = torch.cat([resps_list[i], ri])
else:
for i, ri in enumerate(r):
resps_list[i] = torch.cat([resps_list[i], ri[None]])
# stop token found
stopped |= r == self.stop_token
if stopped.all().item():
break
# to-do: make it work
# it seems anything that isn't a one-at-a-time sequence does not work, despite generating STOP tokens.
else:
resps_list: list[Tensor] = [
torch.zeros(0, device=device).to(torch.int16) for _ in text_list
]
test_list: list[Tensor] = [
torch.zeros(0, device=device).to(torch.int16) for _ in text_list
]
batch_size = len(text_list)
x_list = self._samplewise_merge_tensors(
self.text_emb(text_list),
self.proms_emb(proms_list),
self.resps_emb(self._unsqueeze_list(resps_list)),
sep=self.sep,
)
x, m = list_to_tensor(x_list)
device = x.device
if state is None:
state = {}
# pre-fill KV cache
for n in trange(x.shape[1]):
xs = x[:, n:(n + 1), :]
r, _ = self.retnet(xs, incremental_state=state, token_embeddings=xs, features_only=True)
r = self.classifier(r) * m
logits = torch.stack([hi[-1] for hi in r])
r = Categorical(logits=logits / sampling_temperature).sample()
for i, ri in enumerate(r):
test_list[i] = torch.cat([test_list[i], ri[None]])
# append outputted token
for i, ri in enumerate(r):
resps_list[i] = torch.cat([resps_list[i], ri[None]])
start = x.shape[1]
for n in trange(max_steps // max(1, chunk_size)):
x_list = self._samplewise_merge_tensors(
self.text_emb(text_list),
self.proms_emb(proms_list),
self.resps_emb(self._unsqueeze_list(resps_list)),
sep=self.sep,
)
x, m = list_to_tensor(x_list)
xs = x[:, start+n:start+(n+1), :]
r, _ = self.retnet(xs, incremental_state=state, token_embeddings=xs, features_only=True)
r = self.classifier(r) * m
logits = torch.stack([hi[-1] for hi in r])
r = Categorical(logits=logits / sampling_temperature).sample()
# append outputted token
for i, ri in enumerate(r):
resps_list[i] = torch.cat([resps_list[i], ri[None]])
# stop token found
stopped |= r == self.stop_token
if stopped.all().item():
break
pruned = [self._prune(r) for r in resps_list]
return pruned
def example_usage():
cfg.trainer.backend = "local"
from functools import partial
from einops import repeat
from ..emb.qnt import decode_to_file
from ..engines import Engine
from tqdm import tqdm
device = "cuda"
x8 = partial(repeat, pattern="t -> t l", l=2)
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
def tokenize(content, lang_marker="en"):
split = content.split(" ")
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
return torch.tensor([*map(symmap.get, phones)]).to()
qnt = torch.load("data/qnt.pt")[0].t()[:, :2].to(device)
text_list = [
#torch.tensor([1, 2, 3], device=device),
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
]
proms_list = [
x8(torch.tensor([1, 2, 3], device=device)),
#qnt.to(device),
]
resps_list = [
qnt.to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 12,
}
model = AR(**kwargs).to(device)
engine = Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4))
def sample( name, steps=400 ):
engine.eval()
out = engine(text_list, proms_list, max_steps=steps)
for i, o in enumerate(out):
wav, sr = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
def train():
engine.train()
t = trange(60)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
t.set_description(f"{stats}")
sample("init", 75)
train()
sample("final")
if __name__ == "__main__":
example_usage()