vall-e/vall_e/models/arch/mixtral.py

799 lines
32 KiB
Python

# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py
import math
import torch
import torch.nn.functional as F
from typing import Literal, overload, Optional, Tuple, List, Union
from transformers import MixtralModel, MixtralConfig
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func, MixtralSparseMoeBlock, MixtralAttention, MixtralDecoderLayer, MixtralRMSNorm, repeat_kv
from transformers.modeling_outputs import BaseModelOutputWithPast, MoeModelOutputWithPast
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.processing_utils import Unpack
from .attention import *
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# This is required because batch sizes > 1 throws errors
def MixtralSparseMoeBlock_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
#hidden_states = hidden_states.view(-1, hidden_dim)
hidden_states = hidden_states.reshape(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
MixtralSparseMoeBlock.forward = MixtralSparseMoeBlock_forward
class MixtralAttention_Adapted(MixtralAttention):
def __init__(self, *args, **kwargs):
self.mode = kwargs.pop("mode", "sdpa")
if self.mode == "math":
self.mode = torch.nn.attention.SDPBackend.MATH
elif self.mode == "mem_efficient":
self.mode = torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION
elif self.mode == "flash_(sdpa)":
self.mode = torch.nn.attention.SDPBackend.FLASH_ATTENTION
elif self.mode == "cudnn":
self.mode = torch.nn.attention.SDPBackend.CUDNN_ATTENTION
super().__init__(*args, **kwargs)
# extracts inputs from a batch based on requested causality
def split_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
is_causal: Optional[list] = None,
target_causal_state: Optional[bool] = True,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
):
indices = [ i for i, state in enumerate( is_causal ) if state == target_causal_state ]
# no matching inputs in batch
if not indices:
return indices, None, None, None
# entire batch is homogenous
if len( indices ) == hidden_states.shape[0]:
output_hidden_states, output_self_attn_weights, output_present_key_values = self.forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_causal=target_causal_state,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
return indices, output_hidden_states, output_self_attn_weights, output_present_key_values
input_hidden_states = torch.stack( [ hidden_states[i] for i in indices ] )
input_attention_mask = torch.stack( [ attention_mask[i] for i in indices ] ) if attention_mask is not None else None
input_position_ids = torch.stack( [ position_ids[i] for i in indices ] ) if position_ids is not None else None
input_position_embeddings = (
torch.stack( [ position_embeddings[0][i] for i in indices ] ),
torch.stack( [ position_embeddings[1][i] for i in indices ] ),
) if position_embeddings is not None else None
output_hidden_states, output_self_attn_weights, output_present_key_values = self.forward(
hidden_states=input_hidden_states,
attention_mask=input_attention_mask,
is_causal=target_causal_state,
position_ids=input_position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=input_position_embeddings,
**kwargs,
)
return indices, output_hidden_states, output_self_attn_weights, output_present_key_values
# Adapted from LlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
is_causal: bool = True,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
mode = "default" if output_attentions else self.mode
non_split_attention = [
"default",
torch.nn.attention.SDPBackend.MATH,
torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
torch.nn.attention.SDPBackend.FLASH_ATTENTION,
torch.nn.attention.SDPBackend.CUDNN_ATTENTION
]
# split per batch because other attention mechanisms do not have a conditional is_causal per-batch, only for the entire input
if isinstance( is_causal, list ) and mode not in non_split_attention:
# initialize lists
attn_hidden_states = [ None for _ in is_causal ]
self_attn_weights = [ None for _ in is_causal ]
present_key_values = [ None for _ in is_causal ]
# process causal inputs in a batch
causal_indices, causal_hidden_states, causal_self_attn_weights, causal_present_key_values = self.split_forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_causal=is_causal,
target_causal_state=True,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
# process non-causal inputs in a batch
non_causal_indices, non_causal_hidden_states, non_causal_self_attn_weights, non_causal_present_key_values = self.split_forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_causal=is_causal,
target_causal_state=False,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
# insert causal outputs to batch
for i, idx in enumerate( causal_indices ):
attn_hidden_states[idx] = causal_hidden_states[i]
if output_attentions:
self_attn_weights[idx] = causal_self_attn_weights[i]
# insert non-causal outputs to batch
for i, idx in enumerate( non_causal_indices ):
attn_hidden_states[idx] = non_causal_hidden_states[i]
if output_attentions:
self_attn_weights[idx] = non_causal_self_attn_weights[i]
# combine list
attn_hidden_states = torch.stack( attn_hidden_states, dim=0 )
if output_attentions:
self_attn_weights = torch.stack( self_attn_weights, dim=0 )
return attn_hidden_states, output_attentions, []
dropout_rate = self.attention_dropout if self.training else 0.0
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attn_scores = None
if mode in ["xformers", "flash_attn"]:
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
"""
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
"""
if mode == "flash_attn":
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
causal=is_causal,
softmax_scale=1.0 / math.sqrt(self.head_dim),
dropout_p=dropout_rate,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
elif mode == "xformers":
attn_output = memory_efficient_attention(
query_states,
key_states,
value_states,
attn_bias = LowerTriangularMask(),
scale = 1.0 / math.sqrt(self.head_dim),
p=dropout_rate
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_scores, past_key_value
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
x_mask = attention_mask
if attention_mask is not None:
x_mask = x_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and x_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
if mode in ["sageattn"]:
attn_output = sageattn(
query_states,
key_states,
value_states,
tensor_layout="HND",
is_causal=is_causal
)
elif mode in ["fused_attn"]:
attn_output = fused_attn_func(
query_states,
key_states,
value_states,
causal=is_causal,
softmax_scale=1.0 / math.sqrt(self.head_dim),
dropout_p=dropout_rate,
)
elif mode in ["default"]:
attn_scores = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
# cringe logic
attn_weights = (attn_scores + x_mask) if attention_mask is not None else (attn_scores)
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
else:
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# is_causal = True if x_mask is None and q_len > 1 else False
is_causal = True if x_mask is None and q_len > 1 else False
with torch.nn.attention.sdpa_kernel(self.mode):
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=x_mask,
dropout_p=dropout_rate,
is_causal=is_causal,
)
# cringe
if attn_scores is None and output_attentions:
attn_scores = attn_output
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_scores, past_key_value
class MixtralDecoderLayer_Adapted(MixtralDecoderLayer):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
is_causal: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
is_causal=is_causal,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class MixtralRotaryEmbedding(torch.nn.Module):
def __init__(self, config: MixtralConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class MixtralModel_Adapted(MixtralModel):
def __init__(self, config: MixtralConfig):
#super().__init__(config)
super(MixtralModel, self).__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = torch.nn.ModuleList(
[MixtralDecoderLayer_Adapted(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = MixtralRotaryEmbedding(config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _update_noncausal_mask(
self,
attention_mask,
inputs_embeds,
past_key_values_length,
):
# create noncausal mask
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
bsz, seq_len, _ = inputs_embeds.size()
# generate default mask based on input
if attention_mask is None:
attention_mask = torch.ones( (bsz, seq_len), dtype=torch.bool, device=inputs_embeds.device )
# make square
expanded_mask = attention_mask[:, None, None, :].expand( bsz, 1, seq_len, seq_len ).to( dtype=inputs_embeds.dtype )
# invert from 1.0 = attend, 0.0 = masked to 0.0 = valid, -inf = masked
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill( inverted_mask.to(dtype=torch.bool), torch.finfo(inputs_embeds.dtype).min )
# gut out the things that just shoves responsibility on SDPA's is_causal generating a mask because this causes problems
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
"""
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
"""
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
"""
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
"""
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
is_causal: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
#causal_mask = self._update_causal_mask(
# attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
#)
# because we can attend to both a causal and a non-causal sequence, generate both masks then pick among which to use per batch
if is_causal is not None:
"""
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=inputs_embeds.shape[1],
target_length=attention_mask.shape[-1] if attention_mask is not None else inputs_embeds.shape[1],
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
cache_position=cache_position,
batch_size=inputs_embeds.shape[0],
)
"""
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions)
noncausal_mask = self._update_noncausal_mask(attention_mask, inputs_embeds, past_key_values)
x_mask = torch.stack( [ causal_mask[i, :, :, :] if state else noncausal_mask[i, :, :, :] for i, state in enumerate( is_causal ) ], dim=0 )
else:
x_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
is_causal,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
is_causal=is_causal,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
return output if return_dict else output.to_tuple()