590 lines
16 KiB
Python
Executable File
590 lines
16 KiB
Python
Executable File
from torch import Tensor
|
|
from typing import Any, Protocol
|
|
|
|
Stats = dict[str, float]
|
|
|
|
class TrainFeeder(Protocol):
|
|
def __call__(
|
|
self, *, engine: "Engine", batch: Any
|
|
) -> None | tuple[Tensor, Stats]:
|
|
...
|
|
|
|
def default_feeder(engine, batch):
|
|
if isinstance(batch, list):
|
|
engine( *batch )
|
|
elif isinstance(batch, dict):
|
|
engine( **batch )
|
|
else:
|
|
engine( batch )
|
|
|
|
losses = engine.gather_attribute("loss")
|
|
loss = torch.stack([*losses.values()]).sum()
|
|
|
|
stats = {}
|
|
stats |= {k: v.item() for k, v in losses.items()}
|
|
|
|
return loss, stats
|
|
|
|
|
|
from ..config import cfg
|
|
from ..utils import dispatch_attribute, flatten_dict, gather_attribute, do_gc, to_device
|
|
from ..utils.distributed import init_distributed, distributed_initialized, is_global_leader, world_size, cleanup_distributed
|
|
from ..utils.io import torch_save, torch_load
|
|
from ..models.lora import freeze_non_lora_weights, lora_get_state_dict, lora_load_state_dict
|
|
|
|
import logging
|
|
import time
|
|
import torch
|
|
import torch.distributed
|
|
import os
|
|
|
|
from torch import Tensor
|
|
from torch.distributed import all_reduce
|
|
from typing import Any, Protocol
|
|
from functools import cached_property
|
|
|
|
from .base import TrainFeeder
|
|
from ..utils import wrapper as ml
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
if not distributed_initialized() and cfg.trainer.backend == "local": # and world_size() > 1:
|
|
init_distributed(torch.distributed.init_process_group)
|
|
|
|
# A very naive engine implementation using barebones PyTorch
|
|
class Engine():
|
|
def __init__(self, *args, **kwargs):
|
|
if 'hyper_config' in kwargs:
|
|
self.hyper_config = kwargs['hyper_config']
|
|
kwargs.pop("hyper_config")
|
|
|
|
self.module = kwargs['model'].to(cfg.device).to(torch.float32 if cfg.trainer.amp else cfg.trainer.dtype)
|
|
self.optimizer = kwargs['optimizer'] if 'optimizer' in kwargs else None
|
|
self.lr_scheduler = kwargs['lr_scheduler'] if 'lr_scheduler' in kwargs else None
|
|
|
|
self.global_steps = kwargs.pop("global_steps", 0)
|
|
self.micro_steps = kwargs.pop("micro_steps", 0)
|
|
self.global_samples = kwargs.pop("global_samples", 0)
|
|
self.tokens_processed = kwargs.pop("tokens_processed", 0)
|
|
|
|
self._frozen_params = set()
|
|
|
|
self.max_nan_losses = 8
|
|
self.loss_scaler = torch.cuda.amp.GradScaler() if cfg.trainer.scale_loss else None
|
|
|
|
self.current_batch_size = 0
|
|
self._global_grad_norm = None
|
|
|
|
def freeze(self, freeze_all=True):
|
|
# set to freeze
|
|
if self.hyper_config is None or not hasattr(self.hyper_config, "frozen_params"):
|
|
raise Exception("freeze_all=False yet self.hyper_config.frozen_params is None")
|
|
|
|
# freeze non-LoRA params if requested
|
|
if not self.hyper_config.frozen_params and not freeze_all and cfg.lora is not None:
|
|
return freeze_non_lora_weights( self.module, embeddings=cfg.lora.embeddings )
|
|
|
|
for name, param in self.module.named_parameters():
|
|
if (freeze_all and param.requires_grad) or (not freeze_all and name in self.hyper_config.frozen_params):
|
|
param.requires_grad_(False)
|
|
self._frozen_params.add(param)
|
|
|
|
def unfreeze(self):
|
|
for p in self._frozen_params:
|
|
p.requires_grad_(True)
|
|
self._frozen_params.clear()
|
|
|
|
@property
|
|
def _training(self):
|
|
if not hasattr(self, "hyper_config"):
|
|
return True
|
|
return self.hyper_config.training
|
|
|
|
@property
|
|
def global_step(self):
|
|
return self.global_steps
|
|
|
|
@property
|
|
def micro_step(self):
|
|
return self.micro_steps
|
|
|
|
@property
|
|
def batch_size(self):
|
|
return self.current_batch_size if self.current_batch_size > 0 else cfg.hyperparameters.batch_size
|
|
|
|
@property
|
|
def gradient_accumulation_steps(self):
|
|
return cfg.hyperparameters.gradient_accumulation_steps
|
|
|
|
@property
|
|
def gradient_clipping(self):
|
|
return cfg.hyperparameters.gradient_clipping
|
|
|
|
def gather_attribute(self, *args, **kwargs):
|
|
return gather_attribute(self.module, *args, **kwargs)
|
|
|
|
def dispatch_attribute(self, *args, **kwargs):
|
|
return dispatch_attribute(self.module, *args, **kwargs)
|
|
|
|
def save_checkpoint(self, save_dir, tag ):
|
|
if is_global_leader():
|
|
module = self.module.state_dict()
|
|
|
|
# if training lora
|
|
# this is a separate path to override saving the weights
|
|
lora = None
|
|
if cfg.lora is not None:
|
|
lora, module = lora_get_state_dict( module, split = True )
|
|
save_dir = cfg.ckpt_dir / cfg.lora.full_name
|
|
|
|
save_path = save_dir / tag / f"state.{cfg.weights_format}"
|
|
save_path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
torch_save({
|
|
"module": module,
|
|
"lora": lora,
|
|
"optimizer": self.optimizer.state_dict() if self.optimizer is not None else None,
|
|
"lr_scheduler": self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None,
|
|
|
|
"stats": {
|
|
"global_step": self.global_step,
|
|
"micro_step": self.micro_step,
|
|
"global_samples": self.global_samples,
|
|
"tokens_processed": self.tokens_processed,
|
|
}
|
|
}, save_path)
|
|
|
|
open(save_dir / "latest", 'w').write( tag )
|
|
|
|
torch.distributed.barrier()
|
|
|
|
def load_checkpoint(self, load_dir, tag=None, load_module_strict=True, load_optimizer_states=True, load_lr_scheduler_states=True, load_module_only=False):
|
|
# override to load the lora instead
|
|
if cfg.lora is not None:
|
|
load_dir = cfg.ckpt_dir / cfg.lora.full_name
|
|
|
|
if tag is None:
|
|
tag_path = load_dir / "latest"
|
|
|
|
if not tag_path.exists():
|
|
return
|
|
|
|
tag = open(tag_path).read()
|
|
|
|
load_path = load_dir / tag / f"state.{cfg.weights_format}"
|
|
|
|
if not load_path.exists():
|
|
return
|
|
|
|
state = torch_load(load_path, device=cfg.device)
|
|
|
|
self.global_steps = state['stats']['global_step'] if 'stats' in state else state['global_step']
|
|
self.micro_steps = state['stats']['micro_step'] if 'stats' in state else state['micro_step']
|
|
self.global_samples = state['stats']['global_samples'] if 'stats' in state else state['global_samples']
|
|
self.tokens_processed = state['stats']['tokens_processed'] if 'stats' in state else state['tokens_processed']
|
|
self.module.load_state_dict(state['module'], strict=cfg.trainer.strict_loading)
|
|
|
|
load_optimizer_states = load_optimizer_states and self.optimizer is not None and 'optimizer' in state
|
|
load_lr_scheduler_states = load_lr_scheduler_states and self.lr_scheduler is not None and 'lr_scheduler' in state
|
|
|
|
if load_optimizer_states:
|
|
self.optimizer.load_state_dict(state['optimizer']) #, device=cfg.device)
|
|
|
|
if load_lr_scheduler_states:
|
|
self.lr_scheduler.load_state_dict(state['lr_scheduler']) #, device=cfg.device)
|
|
|
|
if 'lora' in state:
|
|
lora_load_state_dict( self.module, state['lora'] )
|
|
|
|
def eval(self):
|
|
return self.module.eval()
|
|
|
|
def train(self):
|
|
return self.module.train()
|
|
|
|
def to(self, *args, **kwargs):
|
|
self.module = self.module.to(*args, **kwargs)
|
|
if self.optimizer:
|
|
self.optimizer = self.optimizer.to(*args, **kwargs)
|
|
|
|
return self
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.forward(*args, **kwargs)
|
|
|
|
@cached_property
|
|
def device(self):
|
|
return next(self.module.parameters()).device
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.module.forward(*args, **kwargs)
|
|
|
|
def backward(self, loss):
|
|
if self.loss_scaler is not None:
|
|
return self.loss_scaler.scale(loss / self.gradient_accumulation_steps).backward()
|
|
return (loss / self.gradient_accumulation_steps).backward()
|
|
|
|
|
|
def step(self):
|
|
with torch.set_grad_enabled(self.gradient_accumulation_steps > 1):
|
|
self.micro_steps += 1
|
|
self.global_samples += self.batch_size
|
|
|
|
if (self.micro_steps + 1) % max(1, self.gradient_accumulation_steps) == 0:
|
|
torch.nn.utils.clip_grad_norm_(self.module.parameters(), self.gradient_clipping)
|
|
|
|
self.global_steps += 1
|
|
if self.loss_scaler is not None:
|
|
self.loss_scaler.step(self.optimizer)
|
|
self.loss_scaler.update()
|
|
else:
|
|
self.optimizer.step()
|
|
self.optimizer.zero_grad()
|
|
|
|
self._get_grad_norm()
|
|
|
|
def _get_grad_norm(self):
|
|
t = [ param.grad.detach().flatten() for param in self.module.parameters() if param.grad is not None ]
|
|
self._global_grad_norm = torch.cat(t).norm().item() if len(t) else None
|
|
|
|
def get_lr(self):
|
|
lrs = []
|
|
for param_group in self.optimizer.param_groups:
|
|
if 'd_coeff' in param_group:
|
|
lrs.append(param_group['d_coeff'])
|
|
elif 'lr' in param_group:
|
|
lrs.append(param_group['lr'])
|
|
return lrs
|
|
|
|
def set_lr(self, lr):
|
|
for param_group in self.optimizer.param_groups:
|
|
if 'd_coeff' in param_group:
|
|
param_group['d_coeff'] = lr
|
|
elif 'lr' in param_group:
|
|
param_group['lr'] = lr
|
|
|
|
def get_global_grad_norm(self):
|
|
return self._global_grad_norm
|
|
|
|
def traverse(self, *args, **kwargs):
|
|
with ml.autocast():
|
|
self.forward(*args, **kwargs)
|
|
|
|
losses = self.gather_attribute("loss")
|
|
loss = torch.stack([*losses.values()]).sum()
|
|
|
|
if torch.isnan(loss).any():
|
|
self.max_nan_losses = self.max_nan_losses - 1
|
|
if self.max_nan_losses < 0:
|
|
raise RuntimeError("Too many NaN losses detected.")
|
|
|
|
stats = {}
|
|
stats |= {k: v.item() for k, v in losses.items()}
|
|
stats |= self.gather_attribute("scalar")
|
|
|
|
self.backward(loss)
|
|
self.step()
|
|
|
|
return stats
|
|
|
|
# and now to ignore everything from the above
|
|
class Engines(dict[str, Engine]):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.setup()
|
|
|
|
def setup(self):
|
|
self._global_step = 0
|
|
self._micro_step = 0
|
|
self._batch_size = 0
|
|
self._global_samples = 0
|
|
|
|
@property
|
|
def global_step(self):
|
|
return self._global_step
|
|
|
|
@property
|
|
def micro_step(self):
|
|
return self._micro_step
|
|
|
|
@property
|
|
def batch_size(self):
|
|
return self._batch_size
|
|
|
|
@property
|
|
def global_samples(self):
|
|
return self._global_samples
|
|
|
|
def gather_attribute(self, *args, **kwargs):
|
|
ret = {}
|
|
for engine in self.values():
|
|
ret |= engine.gather_attribute(*args, **kwargs)
|
|
return ret
|
|
|
|
def dispatch_attribute(self, *args, **kwargs):
|
|
for engine in self.values():
|
|
engine.dispatch_attribute(*args, **kwargs)
|
|
|
|
def export(self, userdata={}, callback=None, dtype=None, format=None):
|
|
if not format:
|
|
format = cfg.weights_format
|
|
format = format.lower()
|
|
|
|
if dtype is None:
|
|
dtype = cfg.trainer.dtype
|
|
|
|
for name, engine in self.items():
|
|
module = engine.module.state_dict()
|
|
lora = None
|
|
save_path = cfg.ckpt_dir / name / f"fp32.{format}"
|
|
config = engine.module.config if hasattr(engine.module, "config") else engine.hyper_config
|
|
|
|
# safety
|
|
for k, v in module.items():
|
|
module[k] = v.to(dtype)
|
|
|
|
if cfg.lora is not None:
|
|
lora, module = lora_get_state_dict( module, split = True )
|
|
save_path = cfg.ckpt_dir / cfg.lora.full_name / f"fp32.{format}"
|
|
|
|
state_dict = {
|
|
'module': module,
|
|
'lora': lora,
|
|
"stats": {
|
|
"global_step": engine.global_step,
|
|
"micro_step": engine.micro_step,
|
|
"global_samples": engine.global_samples,
|
|
"tokens_processed": engine.tokens_processed,
|
|
},
|
|
"userdata": userdata,
|
|
"config": config.__dict__ | {"experimental": config.experimental.__dict__} # i hate implicit aliasing rules
|
|
}
|
|
|
|
if lora is None:
|
|
del state_dict['lora']
|
|
|
|
if callback:
|
|
state_dict = callback( state_dict, config = engine.hyper_config, save_path = save_path )
|
|
|
|
torch_save(state_dict, save_path)
|
|
_logger.info(f"Exported {name} to {save_path}")
|
|
|
|
def save_checkpoint(self, tag=None):
|
|
if not tag:
|
|
tag = cfg.trainer.save_tag
|
|
tag = tag.lower()
|
|
if tag[:2] == "it" or tag[:4] == "step":
|
|
tag = f'{self.global_step}'
|
|
|
|
cfg.ckpt_dir.mkdir(parents=True, exist_ok=True)
|
|
for name, engine in self.items():
|
|
if not engine._training:
|
|
continue
|
|
|
|
save_dir = cfg.ckpt_dir / name
|
|
try:
|
|
engine.save_checkpoint(save_dir, tag=tag)
|
|
except Exception as e:
|
|
_logger.warning(f'Failed to save checkpoint for engine {name}: {str(e)}')
|
|
|
|
# might be better to prune before saving for safety, but [:0] returns an empty list, but I could do [:-cfg.trainer.keep_last_checkpoints - 1 if cfg.trainer.keep_last_checkpoints > 1 else None]
|
|
if cfg.trainer.keep_last_checkpoints > 0 and is_global_leader():
|
|
checkpoints = [ d for d in list(save_dir.glob("*")) if d.is_dir() ]
|
|
checkpoints.sort(key=lambda x: x.stat().st_mtime)
|
|
checkpoints = checkpoints[:-cfg.trainer.keep_last_checkpoints]
|
|
for d in checkpoints:
|
|
if not d.is_dir() or not d.exists():
|
|
continue
|
|
_logger.info(f"Removing {d}")
|
|
for p in d.iterdir():
|
|
p.unlink()
|
|
d.rmdir()
|
|
|
|
def load_checkpoint(self, tag=None, training=True):
|
|
if not tag:
|
|
tag = cfg.trainer.load_tag
|
|
|
|
for name, engine in self.items():
|
|
load_dir = cfg.ckpt_dir / name
|
|
|
|
engine.load_checkpoint(
|
|
tag=tag,
|
|
load_dir=load_dir,
|
|
load_module_strict=cfg.trainer.strict_loading,
|
|
load_optimizer_states=False if cfg.trainer.load_module_only or not training else cfg.trainer.load_states,
|
|
load_lr_scheduler_states=False if cfg.trainer.load_module_only or not training else cfg.trainer.load_states,
|
|
load_module_only=cfg.trainer.load_module_only,
|
|
)
|
|
if cfg.trainer.restart_step_count:
|
|
engine.global_steps = 0
|
|
engine.mocro_step = 0
|
|
engine.global_samples = 0
|
|
engine.tokens_processed = 0
|
|
|
|
# update the LR because for some god awful reason it gets overwritten when loading from a checkpoint but only when it's not using a scheduler
|
|
if cfg.hyperparameters.scheduler_type == "":
|
|
self.set_lr(cfg.hyperparameters.learning_rate)
|
|
|
|
self._update()
|
|
|
|
def set_lr(self, lr):
|
|
for engine in self.values():
|
|
if not engine._training:
|
|
continue
|
|
engine.set_lr(lr)
|
|
|
|
def _update(self):
|
|
for engine in self.values():
|
|
self._global_step = max(self._global_step, engine.global_step)
|
|
self._micro_step = max(self._micro_step, engine.micro_step)
|
|
self._batch_size = max(self._batch_size, engine.batch_size)
|
|
self._global_samples = max(self._global_samples, engine.global_samples)
|
|
|
|
def eval(self):
|
|
for engine in self.values():
|
|
engine.eval()
|
|
|
|
def train(self):
|
|
for engine in self.values():
|
|
engine.train()
|
|
|
|
def traverse(self):
|
|
stats = {}
|
|
for name, engine in self.items():
|
|
stat = engine.traverse()
|
|
stats.update(flatten_dict({ name.split("-")[0]: stat }))
|
|
return stats
|
|
|
|
def quit(self):
|
|
cleanup_distributed()
|
|
|
|
def step(self, batch, feeder: TrainFeeder = default_feeder):
|
|
total_elapsed_time = 0
|
|
|
|
stats: Any = dict()
|
|
|
|
if cfg.trainer.gc_mode == 'step':
|
|
do_gc()
|
|
|
|
for name, engine in self.items():
|
|
if not engine._training:
|
|
continue
|
|
|
|
device = engine.device
|
|
|
|
if cfg.trainer.gc_mode == 'substep':
|
|
do_gc()
|
|
|
|
start_time = time.time()
|
|
|
|
tries = 4
|
|
n_ooms = torch.zeros([], device=device)
|
|
|
|
batch = to_device(batch, device)
|
|
|
|
if not cfg.trainer.check_for_oom:
|
|
res = feeder( engine=engine, batch=batch )
|
|
else:
|
|
while tries >= 0:
|
|
try:
|
|
res = feeder( engine=engine, batch=batch )
|
|
break
|
|
except RuntimeError as e:
|
|
_logger.error(f"Forward: {str(e)}")
|
|
|
|
if "out of memory" not in str(e):
|
|
self.save_checkpoint()
|
|
raise e
|
|
|
|
# shrink batch size until it's happy
|
|
for k in batch:
|
|
batch[k] = batch[k][:-1]
|
|
|
|
if tries <= 0:
|
|
# trigger OOM
|
|
n_ooms += 1
|
|
else:
|
|
# also do GC
|
|
do_gc()
|
|
continue
|
|
|
|
if world_size() > 1:
|
|
all_reduce(n_ooms)
|
|
if n_ooms.item() > 0:
|
|
self.save_checkpoint()
|
|
raise RuntimeError("Out of memory during forward pass!")
|
|
|
|
if res is None:
|
|
continue
|
|
|
|
loss, engine_stats = res
|
|
engine_stats |= self.gather_attribute("scalar")
|
|
|
|
n_ooms = torch.zeros([], device=device)
|
|
|
|
if cfg.trainer.aggressive_optimizations:
|
|
batch = to_device(batch, 'cpu')
|
|
|
|
if not cfg.trainer.check_for_oom:
|
|
engine.backward(loss)
|
|
else:
|
|
# to-do: properly handle when one GPU throws an OOM because it just halts
|
|
try:
|
|
engine.backward(loss)
|
|
except RuntimeError as e:
|
|
_logger.error(f"Backwards: {str(e)}")
|
|
|
|
if "out of memory" not in str(e):
|
|
self.save_checkpoint()
|
|
raise e
|
|
|
|
n_ooms += 1
|
|
|
|
if world_size() > 1:
|
|
all_reduce(n_ooms)
|
|
|
|
if n_ooms.item() > 0:
|
|
self.save_checkpoint()
|
|
|
|
raise RuntimeError("Out of memory during backwards pass!")
|
|
|
|
engine.step()
|
|
|
|
#torch.cuda.synchronize()
|
|
|
|
elapsed_time = time.time() - start_time
|
|
total_elapsed_time += elapsed_time
|
|
grad_norm = engine.get_global_grad_norm()
|
|
loss_scale = 1
|
|
if hasattr(engine.optimizer, "loss_scale") and engine.optimizer.loss_scale is not None:
|
|
loss_scale = engine.optimizer.loss_scale
|
|
|
|
if grad_norm is not None:
|
|
grad_norm /= loss_scale
|
|
|
|
stats.update(
|
|
flatten_dict(
|
|
{
|
|
name.split("-")[0]: dict(
|
|
**engine_stats,
|
|
lr=engine.get_lr()[0],
|
|
grad_norm=grad_norm.item() if isinstance( grad_norm, torch.Tensor ) else grad_norm,
|
|
loss_scale=loss_scale if loss_scale != 1 else None,
|
|
elapsed_time=elapsed_time,
|
|
engine_step=engine.global_step,
|
|
samples_processed=engine.global_samples,
|
|
tokens_processed=engine.tokens_processed,
|
|
)
|
|
}
|
|
),
|
|
)
|
|
|
|
self._update()
|
|
|
|
if len(self.keys()) > 1:
|
|
stats["elapsed_time"] = total_elapsed_time
|
|
|
|
stats["it"] = self.global_step
|
|
|
|
return stats
|