vall-e/vall_e/models/__init__.py

65 lines
1.5 KiB
Python
Executable File

import logging
_logger = logging.getLogger(__name__)
def get_model(config, training=True, **model_kwargs):
name = config.name
if "len" in config.capabilities:
from .nar import NAR
model = NAR(
n_text_tokens=config.text_tokens,
n_audio_tokens=config.audio_tokens,
d_model=config.dim,
n_heads=config.heads,
n_layers=config.layers,
n_experts=config.experts,
p_dropout=config.dropout,
l_padding = config.input_alignment,
training = training,
config = config,
**model_kwargs
)
elif config.experimental.hf:
from .experimental import Model as Experimental
model = Experimental(
n_text_tokens=config.text_tokens,
n_audio_tokens=config.audio_tokens,
d_model=config.dim,
n_layers=config.layers,
n_heads=config.heads,
p_dropout=config.dropout,
config = config,
**model_kwargs
)
else:
from .ar_nar import AR_NAR
model = AR_NAR(
n_text_tokens=config.text_tokens,
n_audio_tokens=config.audio_tokens,
d_model=config.dim,
n_heads=config.heads,
n_layers=config.layers,
n_experts=config.experts,
p_dropout=config.dropout,
l_padding = config.input_alignment,
training = training,
config = config,
**model_kwargs
)
_logger.info(f"{name} ({next(model.parameters()).dtype}): {sum(p.numel() for p in model.parameters() if p.requires_grad)} parameters")
return model
def get_models(models, training=True, **model_kwargs):
return { model.full_name: get_model(model, training=training, **model_kwargs) for model in models }