vall-e/vall_e/models/arch/llama.py

904 lines
31 KiB
Python

import math
import torch
import logging
import random
from typing import Literal, overload, Optional, Tuple, Union, List
from torch import Tensor, nn
# lazy
from transformers.models.llama.configuration_llama import LlamaConfig as BaseConfig
from transformers.models.llama.modeling_llama import LlamaPreTrainedModel
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.activations import ACT2FN
from .attention import *
class Config(BaseConfig):
def __init__(
self,
attn_mode = "sdpa",
output_norm = True,
causal = True,
layer_dropout = 0.0,
*args, **kwargs
):
super().__init__(*args, **kwargs)
self.attn_mode = attn_mode
self.output_norm = output_norm
self.causal = causal
self.layer_dropout = layer_dropout
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class RotaryEmbedding(nn.Module):
def __init__(self, config, device=None):
super().__init__()
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float().to(x.device) @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class Attention(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.attn_mode = config.attn_mode
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
# legacy
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
if self.attn_mode == "math":
self.attn_mode = torch.nn.attention.SDPBackend.MATH
elif self.attn_mode == "mem_efficient":
self.attn_mode = torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION
elif self.attn_mode == "flash_(sdpa)":
self.attn_mode = torch.nn.attention.SDPBackend.FLASH_ATTENTION
elif self.attn_mode == "cudnn":
self.attn_mode = torch.nn.attention.SDPBackend.CUDNN_ATTENTION
self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias )
self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias )
self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias )
self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias )
# extracts inputs from a batch based on requested causality
def split_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
is_causal: Optional[list] = None,
target_causal_state: Optional[bool] = True,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
):
indices = [ i for i, state in enumerate( is_causal ) if state == target_causal_state ]
# no matching inputs in batch
if not indices:
return indices, None, None, None
# entire batch is homogenous
if len( indices ) == hidden_states.shape[0]:
output_hidden_states, output_self_attn_weights, output_present_key_values = self.forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_causal=target_causal_state,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
return indices, output_hidden_states, output_self_attn_weights, output_present_key_values
input_hidden_states = torch.stack( [ hidden_states[i] for i in indices ] )
input_attention_mask = torch.stack( [ attention_mask[i] for i in indices ] ) if attention_mask is not None else None
input_position_ids = torch.stack( [ position_ids[i] for i in indices ] ) if position_ids is not None else None
input_position_embeddings = (
torch.stack( [ position_embeddings[0][i] for i in indices ] ),
torch.stack( [ position_embeddings[1][i] for i in indices ] ),
) if position_embeddings is not None else None
output_hidden_states, output_self_attn_weights, output_present_key_values = self.forward(
hidden_states=input_hidden_states,
attention_mask=input_attention_mask,
is_causal=target_causal_state,
position_ids=input_position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=input_position_embeddings,
**kwargs,
)
return indices, output_hidden_states, output_self_attn_weights, output_present_key_values
# Adapted from LlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
is_causal: bool = True,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
mode = "default" if output_attentions else self.attn_mode
non_split_attention = [
"default",
torch.nn.attention.SDPBackend.MATH,
torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
torch.nn.attention.SDPBackend.FLASH_ATTENTION,
torch.nn.attention.SDPBackend.CUDNN_ATTENTION
]
# split per batch because other attention mechanisms do not have a conditional is_causal per-batch, only for the entire input
if isinstance( is_causal, list ) and mode not in non_split_attention:
# initialize lists
attn_hidden_states = [ None for _ in is_causal ]
self_attn_weights = [ None for _ in is_causal ]
present_key_values = [ None for _ in is_causal ]
# process causal inputs in a batch
causal_indices, causal_hidden_states, causal_self_attn_weights, causal_present_key_values = self.split_forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_causal=is_causal,
target_causal_state=True,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
# process non-causal inputs in a batch
non_causal_indices, non_causal_hidden_states, non_causal_self_attn_weights, non_causal_present_key_values = self.split_forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_causal=is_causal,
target_causal_state=False,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=False,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
# insert causal outputs to batch
for i, idx in enumerate( causal_indices ):
attn_hidden_states[idx] = causal_hidden_states[i]
if output_attentions:
self_attn_weights[idx] = causal_self_attn_weights[i]
# insert non-causal outputs to batch
for i, idx in enumerate( non_causal_indices ):
attn_hidden_states[idx] = non_causal_hidden_states[i]
if output_attentions:
self_attn_weights[idx] = non_causal_self_attn_weights[i]
# combine list
attn_hidden_states = torch.stack( attn_hidden_states, dim=0 )
if output_attentions:
self_attn_weights = torch.stack( self_attn_weights, dim=0 )
return attn_hidden_states, output_attentions, []
dropout_rate = self.attention_dropout if self.training else 0.0
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attn_scores = None
if mode in ["xformers", "flash_attn"]:
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if mode == "flash_attn":
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
causal=is_causal,
softmax_scale=1.0 / math.sqrt(self.head_dim),
dropout_p=dropout_rate,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
elif mode == "xformers":
attn_output = memory_efficient_attention(
query_states,
key_states,
value_states,
attn_bias = LowerTriangularMask(),
scale = 1.0 / math.sqrt(self.head_dim),
p=dropout_rate
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_scores, past_key_value
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
x_mask = attention_mask
if attention_mask is not None:
x_mask = x_mask[:, :, :, : key_states.shape[-2]]
# pain
# SDPA backends only sometimes allowing/disallowing some arguments...
if isinstance( is_causal, list ):
count = sum( [ 1 if x else 0 for x in is_causal ] )
if count == 0:
is_causal = False
elif count == len( is_causal ):
is_causal = True
elif x_mask is not None:
is_causal = False
if self.attn_mode in [torch.nn.attention.SDPBackend.FLASH_ATTENTION]:
x_mask = None
elif is_causal == True:
x_mask = None
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and x_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
if mode in ["sageattn"]:
attn_output = sageattn(
query_states,
key_states,
value_states,
tensor_layout="HND",
is_causal=is_causal
)
elif mode in ["flex"]:
def causal_mod(score, b, h, q_idx, kv_idx):
if x_mask is not None:
score = score + x_mask[b][0][q_idx][kv_idx]
return score
attn_output, attn_weights = flex_attention(
query_states,
key_states,
value_states,
score_mod=causal_mod,
enable_gqa=True,
scale=self.head_dim**-0.5,
return_lse=True,
)
elif mode in ["fused_attn"]:
attn_output = fused_attn_func(
query_states,
key_states,
value_states,
causal=is_causal,
softmax_scale=1.0 / math.sqrt(self.head_dim),
dropout_p=dropout_rate,
)
elif mode in ["default"]:
attn_scores = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if x_mask is None:
attn_weights = attn_scores
elif x_mask.dtype == torch.bool:
attn_weights = attn_scores.masked_fill(x_mask.logical_not(), float("-inf"))
else:
attn_weights = attn_scores + x_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
elif mode == "sdpa":
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=x_mask,
dropout_p=dropout_rate,
is_causal=is_causal,
)
else:
with torch.nn.attention.sdpa_kernel(self.attn_mode):
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=x_mask,
dropout_p=dropout_rate,
is_causal=is_causal,
)
# cringe
if attn_scores is None and output_attentions:
attn_scores = attn_output
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_scores, past_key_value
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class DecoderLayer(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
if config.attn_mode == "sparse":
self.self_attn = NativeSparseAttention(config=config, layer_idx=layer_idx)
else:
self.self_attn = Attention(config=config, layer_idx=layer_idx)
self.mlp = MLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
is_causal: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# ugh
"""
if isinstance( is_causal, list ) and len(is_causal) == 1:
is_causal = is_causal[0]
"""
# Self Attention
if self.config.attn_mode == "sparse":
hidden_states = self.self_attn(
hidden_states
)
else:
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_causal=is_causal,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class Model(LlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.layers_n = config.num_hidden_layers
self.layers = nn.ModuleList(
[DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) if config.output_norm else nn.Identity()
self.rotary_emb = RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# setup layer dropout LUT
LN_2 = 0.69314718056
self.layer_dropouts = [ (math.exp((l * LN_2) / (self.layers_n - 1)) - 1) * self.config.layer_dropout for l in range(self.layers_n) ]
# Initialize weights and apply final processing
self.post_init()
# shamelessly inspired from https://github.com/open-mmlab/Amphion/blob/main/models/tts/maskgct/llama_nar.py#L256
def _update_noncausal_mask(
self,
attention_mask,
inputs_embeds,
past_key_values_length = 0,
):
# create noncausal mask
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
bsz, seq_len, _ = inputs_embeds.size()
dtype = torch.bool
device = inputs_embeds.device
min_dtype = False # torch.iinfo(dtype).min # torch.finfo(dtype).min
# generate default mask based on input
if attention_mask is None:
attention_mask = torch.ones( (bsz, seq_len), dtype=dtype, device=device )
# make square
mask = attention_mask[:, None, None, :].expand( bsz, 1, seq_len, seq_len ).to(dtype)
return mask
# generate a sliding window pattern
def _sliding_window( self, seq_len, window_size ):
if not window_size:
return True
half_window = int(window_size // 2)
mask = torch.zeros( seq_len, seq_len, dtype=torch.bool )
for i in range( seq_len ):
window_start = max( 0, i - half_window )
window_end = min( seq_len, i + half_window + 1 )
mask[i, window_start:window_end] = True
return mask
# some funky segmented-attention mask because my gut says to do this
def _update_segmented_mask(
self,
attention_mask,
inputs_embeds,
aux_lens, # (bsz, lens), where [batch_index, 0] = text_len, and [batch_index, 1] = prom_len
window_sizes = None, # (bsz, lens), same as above
past_key_values_length = 0,
):
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
bsz, seq_len, _ = inputs_embeds.size()
dtype = torch.bool
device = inputs_embeds.device
min_dtype = False # torch.iinfo(dtype).min # torch.finfo(dtype).min
if attention_mask is None:
attention_mask = torch.ones((bsz, seq_len), dtype=dtype, device=device)
mask = torch.full( (bsz, 1, seq_len, seq_len), min_dtype, dtype=dtype, device=device )
for batch_index, aux_len in enumerate( aux_lens ):
window_size = window_sizes[batch_index] if window_sizes is not None else None
text_len = aux_len[0]
prom_len = aux_len[1]
output_len = aux_len[2]
text_window = window_size[0] if window_size is not None else 0
prom_window = window_size[1] if window_size is not None else 0
output_window = window_size[2] if window_size is not None else 0
text_start, text_end = 0, text_len
prom_start, prom_end = text_end, text_end + prom_len
output_start, output_end = prom_end, prom_end + output_len
if text_len:
mask[batch_index, 0, text_start:text_end, text_start:text_end] = True
if prom_len:
mask[batch_index, 0, prom_start:prom_end, text_start:prom_end] = True
if output_len:
mask[batch_index, 0, output_start:output_end, text_start:output_end] = True
"""
if text_len:
mask[batch_index, 0, text_start:text_end, text_start:text_end] = True if not text_window else self._sliding_window( text_len, text_window )
if prom_len:
mask[batch_index, 0, prom_start:prom_end, text_start:text_end] = True
mask[batch_index, 0, prom_start:prom_end, prom_start:prom_end] = True if not prom_window else self._sliding_window( prom_len, prom_window )
if output_len:
mask[batch_index, 0, output_start:output_end, text_start:text_end] = True
mask[batch_index, 0, output_start:output_end, prom_start:prom_end] = True
mask[batch_index, 0, output_start:output_end, output_start:output_end] = True if not output_window else self._sliding_window( output_len, output_window )
"""
# apply the original attention mask
mask = mask * attention_mask[:, None, None, :].expand(bsz, 1, seq_len, seq_len).to(dtype)
return mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
bsz, seq_len, _ = inputs_embeds.size()
if attention_mask is None:
attention_mask = torch.ones((bsz, seq_len), dtype=torch.bool, device=device)
"""
if attention_mask is not None and attention_mask.dim() == 4:
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
# gut out the things that just shoves responsibility on SDPA's is_causal generating a mask because this causes problems
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def dropout_layer( self, l ):
return random.random() < self.layer_dropouts[l] if self.training else False
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
is_causal: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
_logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
_logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# use already crafted mask
if attention_mask.dim() > 2:
x_mask = attention_mask
# because we can attend to both a causal and a non-causal sequence, generate both masks then pick among which to use per batch
elif is_causal is not None:
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions)
noncausal_mask = self._update_noncausal_mask(attention_mask, inputs_embeds, past_key_values)
x_mask = torch.stack( [ causal_mask[i, :, :, :] if state else noncausal_mask[i, :, :, :] for i, state in enumerate( is_causal ) ], dim=0 )
else:
x_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for l, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
x_mask,
is_causal,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=x_mask,
is_causal=is_causal,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
if not self.dropout_layer( l ):
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)