vall-e/vall_e/train.py
2023-08-02 21:53:35 +00:00

267 lines
7.9 KiB
Python
Executable File

# todo: clean this mess up
# todo: yank deepspeed dependent code out into its own thing
from .config import cfg
from .data import create_train_val_dataloader
from .emb import qnt
from .utils import setup_logging, to_device, trainer, flatten_dict, do_gc
from .utils import wrapper as ml
from .models import get_models
import auraloss
import deepspeed
import json
import logging
import random
import torch
import torch.nn.functional as F
import traceback
from collections import defaultdict
from deepspeed import comm as dist
from deepspeed import DeepSpeedConfig
from deepspeed.accelerator import get_accelerator
from tqdm import tqdm
mel_stft_loss = auraloss.freq.MelSTFTLoss(24_000, device="cuda")
def center_crop(x, len):
start = (x.shape[-1] - len) // 2
stop = start + len
return x[..., start:stop]
def left_crop(x, len):
return x[..., 0:len]
_logger = logging.getLogger(__name__)
deepspeed._initialized_dist = False
def load_engines():
if not deepspeed._initialized_dist:
deepspeed._initialized_dist = True
deepspeed.init_distributed()
models = get_models(cfg.models.get())
engines = dict()
for name in models:
model = models[name]
optimizer = None
lr_scheduler = None
Adam = ml.Adam
AdamW = ml.AdamW
if cfg.hyperparameters.optimizer.lower() == "adamw-torch":
optimizer = AdamW(
model.parameters(),
lr=cfg.hyperparameters.learning_rate,
betas=(0.9, 0.96),
eps=1e-07,
weight_decay=0.01,
)
if cfg.trainer.load_state_dict:
load_dir = cfg.ckpt_dir / name / "fp32.pth"
model.load_state_dict(torch.load(load_dir))
ds_cfg=cfg.get_ds_cfg(model=model)
config_class=DeepSpeedConfig(ds_cfg)
engines[name] = trainer.Engine(
model=model,
config=ds_cfg,
config_class=config_class,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
return trainer.load_engines(engines, cfg)
def main():
#dist.init_distributed(dist_backend=get_accelerator().communication_backend_name())
if not deepspeed._initialized_dist:
deepspeed._initialized_dist = True
deepspeed.init_distributed()
setup_logging(cfg.log_dir)
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
def train_feeder(engines, batch, name):
stats = {}
model = engines[name]
if name.startswith("ar"):
_ = model(
text_list=batch["text"],
proms_list=batch["proms"],
resp_list=[r[..., 0] for r in batch["resps"]],
)
elif name.startswith("nar"):
_ = model(
text_list=batch["text"],
proms_list=batch["proms"],
resps_list=batch["resps"],
)
else:
raise NotImplementedError(name)
losses = model.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
stats |= engines.gather_attribute("scalar")
return loss, stats
@torch.inference_mode()
def run_eval(engines, eval_name, dl):
engines_stats = {
'eval': eval_name
}
AR = None
NAR = None
names = []
for name in engines:
model = engines[name]
names.append(name)
if name[:2] == "ar":
AR = model
elif name[:3] == "nar":
NAR = model
stats = defaultdict(list)
stats['loss'] = []
for batch in tqdm(dl):
batch: dict = to_device(batch, cfg.device)
# if we're training both models, provide output for both
if AR is not None and NAR is not None:
name = "+".join(names)
resp_list = AR(text_list=batch["text"], proms_list=batch["proms"], max_steps=cfg.evaluation.steps, sampling_temperature=cfg.evaluation.temperature)
resps_list = [ r.unsqueeze(-1) for r in resp_list ]
resps_list = NAR(text_list=batch["text"], proms_list=batch["proms"], resps_list=resps_list, sampling_temperature=cfg.evaluation.temperature)
for speaker, path, ref, hyp, prom in zip(batch["spkr_name"], batch["path"], batch["resps"], resps_list, batch["proms"]):
if len(hyp) == 0:
continue
filename = f'{speaker}_{path.parts[-1]}'
# to-do, refine the output dir to be sane-er
ref_path = (cfg.log_dir / str(engines.global_step) / "ref" / filename).with_suffix(".wav")
hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / filename).with_suffix(".wav")
prom_path = (cfg.log_dir / str(engines.global_step) / name / "prom" / filename).with_suffix(".wav")
hyp_path.parent.mkdir(parents=True, exist_ok=True)
ref_path.parent.mkdir(parents=True, exist_ok=True)
prom_path.parent.mkdir(parents=True, exist_ok=True)
ref_audio, sr = qnt.decode_to_file(ref, ref_path)
hyp_audio, sr = qnt.decode_to_file(hyp, hyp_path)
prom_audio, sr = qnt.decode_to_file(prom, prom_path)
min_length = min( ref_audio.shape[-1], hyp_audio.shape[-1] )
ref_audio = ref_audio[..., 0:min_length]
hyp_audio = hyp_audio[..., 0:min_length]
stats['loss'].append(mel_stft_loss(hyp_audio, ref_audio).item())
else:
for name in engines:
model = engines[name]
if name.startswith("ar"):
resp_list = model(
text_list=batch["text"],
proms_list=batch["proms"],
max_steps=cfg.evaluation.steps,
sampling_temperature=cfg.evaluation.temperature,
)
resps_list = [r.unsqueeze(-1) for r in resp_list]
elif name.startswith("nar"):
resps_list = model(
text_list=batch["text"],
proms_list=batch["proms"],
resps_list=[r[..., 0].unsqueeze(-1) for r in batch["resps"]],
sampling_temperature=cfg.evaluation.temperature,
)
else:
raise NotImplementedError(name)
losses = model.gather_attribute("loss")
batch_stats = {}
batch_stats |= {k: v.item() for k, v in losses.items()}
batch_stats |= engines.gather_attribute("scalar")
for k, v in batch_stats.items():
stats[k].append(v)
for speaker, path, ref, hyp, prom in zip(batch["spkr_name"], batch["path"], batch["resps"], resps_list, batch["proms"]):
if len(hyp) == 0:
continue
filename = f'{speaker}_{path.parts[-1]}'
# to-do, refine the output dir to be sane-er
ref_path = (cfg.log_dir / str(engines.global_step) / "ref" / filename).with_suffix(".wav")
hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / filename).with_suffix(".wav")
prom_path = (cfg.log_dir / str(engines.global_step) / name / "prom" / filename).with_suffix(".wav")
hyp_path.parent.mkdir(parents=True, exist_ok=True)
ref_path.parent.mkdir(parents=True, exist_ok=True)
prom_path.parent.mkdir(parents=True, exist_ok=True)
ref_audio, sr = qnt.decode_to_file(ref, ref_path)
hyp_audio, sr = qnt.decode_to_file(hyp, hyp_path)
prom_audio, sr = qnt.decode_to_file(prom, prom_path)
# pseudo loss calculation since we don't get the logits during eval
min_length = min( ref_audio.shape[-1], hyp_audio.shape[-1] )
ref_audio = ref_audio[..., 0:min_length]
hyp_audio = hyp_audio[..., 0:min_length]
stats['loss'].append(mel_stft_loss(hyp_audio, ref_audio).item())
stats = {k: sum(v) / len(v) for k, v in stats.items()}
engines_stats.update(flatten_dict({ name: stats }))
iteration = engines.global_step
engines_stats['it'] = iteration
engines_stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(train_dl)
_logger.info(f"Validation Metrics: {json.dumps(engines_stats)}.")
def eval_fn(engines):
try:
run_eval(engines, "subtrain", subtrain_dl)
run_eval(engines, "val", val_dl)
except Exception as e:
print("Error occurred while performing eval:", str(e))
print(traceback.format_exc())
qnt.unload_model()
do_gc()
qnt.unload_model()
trainer.train(
engines_loader=load_engines,
train_dl=train_dl,
train_feeder=train_feeder,
eval_fn=eval_fn,
)
if __name__ == "__main__":
main()