vall-e/vall_e/models/ar_nar.py

635 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
# an AR + NAR model that handles:
* inferencing the primary RVQ level in an autoregressive manner (AR)
* inferencing the remaining RVQ levels in parallel (NAR)
This model can fully handle being trained as a unified model (AR + NAR) or separate models (AR | NAR).
It's recommended to train as a unified model, then "distill" knowledge of each tasks separately, just in case.
"""
from .base import Base, list_to_tensor, Categorical
from ..config import cfg
import torch
from torch.nn.utils.rnn import pad_sequence
import random
import math
from einops import rearrange
from torch import Tensor
from tqdm import trange
from ..emb.qnt import trim, encode_as_embedding
from .lora import enable_lora
def clamp(n, lo, hi):
return max(lo, min(n, hi))
class AR_NAR(Base):
@property
def capabilities(self) -> list[str]:
if hasattr(self, "config") and self.config:
return self.config.capabilities
return cfg.model.capabilities
@property
def causal(self):
return "ar" in self.capabilities
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.model.resp_levels
@property
def n_max_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.max_levels
return cfg.model.max_levels
@property
def n_tasks(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tasks
return cfg.model.tasks
@property
def n_langs(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.langs
return cfg.model.langs
@property
def n_tones(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tones
return cfg.model.tones
@property
def causal_size(self) -> int:
# 1 for the stop token
# governs how much to shift the logits by
# could *technically* make it work to where it can also predict *ALL* RVQ levels in one step, but experimental.py is the better way to go about it
if hasattr(self, "config") and self.config:
return self.config.experimental.causal_size
return cfg.model.experimental.causal_size
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.model.version
def _prune(self, l: Tensor, stop = None):
if stop is None:
stop = self.stop_token
indices = (l == stop).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
task_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
training: bool | None = None,
max_steps: int = 1000,
max_levels: int = 0,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
sampling_dry_multiplier=0.0,
sampling_dry_base=1.75,
sampling_dry_allowed_length=2,
disable_tqdm=False,
):
device = text_list[0].device
batch_size = len(text_list)
# generate task list if not provided
if task_list is None:
task_list = [ "tts" for _ in range(batch_size) ]
# is training or NAR
if resps_list is not None:
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))
if training is None:
training = n_levels == self.n_resp_levels
# is training
if training:
# specifies how to sample probabilities of which RVQ levels to train against
p_rvq_levels = self.config.experimental.p_rvq_levels if self.config is not None else "equal"
# determines which RVQ level to target per batch
quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ]
# rate to perform token dropout errors
token_dropout_error = self.config.experimental.token_dropout_error
# RVQ levels to apply token dropout on
token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels
# implicitly set it to all levels
if not token_dropout_rvq_levels:
token_dropout_rvq_levels = [0, self.resp_levels - 1]
# allow passing a specific distribution of RVQ levels
p_rvq_levels = p_rvq_levels if isinstance(p_rvq_levels, list) else []
if not p_rvq_levels:
lo, hi = quant_level_range[0], quant_level_range[1] + 1
# randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
if p_rvq_levels == "equal":
p_rvq_levels = [ i for i in range( lo, hi ) ]
else:
# yuck
p_rvq_levels = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], [])
# input RVQ levels
quant_levels = [ random.choice( p_rvq_levels ) for i in range(batch_size) ]
# trim resps to only contain all levels below the target level
resps_list = [r[..., :l+1] for r, l in zip(resps_list, quant_levels)]
# tensor to cat for RVQ level 0
stop_sequence = torch.Tensor([[self.stop_token] * 1]).to(device=device, dtype=torch.int16)
# I hate python's value/reference semantics so much
for i, quant_level, resps, proms in zip(range(batch_size), quant_levels, resps_list, proms_list):
# cap quant_level if it exceeds its corresponding resp/prom
if quant_level >= resps.shape[-1]:
quant_levels[i] = resps.shape[-1] - 1
# proms could be a Tensor, list[Tensor], or None
if isinstance( proms, torch.Tensor ):
if quant_level >= proms.shape[-1]:
quant_levels[i] = proms.shape[-1] - 1
elif isinstance( proms, list ):
for j, prom in enumerate( proms ):
if not isinstance( prom, torch.Tensor ):
continue
if quant_level >= prom.shape[-1]:
quant_levels[i] = prom.shape[-1] - 1
# apply token dropout error compensation
if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]):
steps = resps.shape[0]
for l in range( quant_level ):
for t in range( steps ):
token = resps[t, l].item()
if random.random() < token_dropout_error:
offset = 1 * ( 1 if random.random() < 0.5 else -1 )
resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1
# only apply stop token for RVQ level 0
if quant_level <= 0:
# append stop tokens for AR
resps_list[i] = torch.cat([ resps, stop_sequence ])
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
task_list=task_list,
quant_levels=quant_levels,
)
return super().forward(
inputs=inputs,
quant_levels=quant_levels, # could technically just grab this from the above inputs since they're included as an RVQ level token
)
# is NAR
if max_levels == 0:
max_levels = self.n_max_levels - 1
# expand if given a raw 1D tensor
for i, resp in enumerate(resps_list):
if resp.dim() == 1:
resps_list[i] = resp.unsqueeze(-1)
prev_list = resps_list
for n in trange( max_levels, desc="NAR", disable=disable_tqdm ):
level = prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( level ) )
quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=prev_list,
lang_list=lang_list,
tone_list=tone_list,
quant_levels=quant_levels,
)
logits = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
resps_list = super().sample(
logits=logits,
resps_list=prev_list,
quant_levels=quant_levels,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
#repetition_penalty=sampling_repetition_penalty,
#repetition_penalty_decay=sampling_repetition_penalty_decay,
#length_penalty=sampling_length_penalty,
#beam_width=sampling_beam_width,
#mirostat=mirostat,
)
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
if cfg.lora is not None:
enable_lora( self )
return prev_list
# is AR
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( 0 ) )
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in range(batch_size) ]
stopped = torch.zeros(batch_size, device=device).bool()
stop_token = self.stop_token
state = None
mirostat = [
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if sampling_mirostat_tau > 0.0 else None
scores = [ 1.0 ] * sampling_beam_width
# get next in sequence
for n in trange(max_steps // max(1, self.causal_size), desc="AR", disable=disable_tqdm):
resps_list = self._unsqueeze_list(sequence_list)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
task_list=task_list,
quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
)
if state is not None:
logits, state = super().forward(
inputs=inputs,
state=state,
)
else:
logits = super().forward(
inputs=inputs,
state=state,
)
r = super().sample(
logits=logits,
resps_list=resps_list,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
length_penalty=sampling_length_penalty,
beam_width=sampling_beam_width,
mirostat=mirostat,
dry_multiplier=sampling_dry_multiplier,
dry_base=sampling_dry_base,
dry_allowed_length=sampling_dry_allowed_length,
)
if mirostat is not None:
# r is the state
mirostat = r
# extract token from state
r = [ state["token"] for state in mirostat ]
# we do it here because the sampler will already expand our logits list
elif sampling_beam_width > 0:
# expand tuple
r, s = r
# first step, expand batch
if batch_size == 1:
batch_size = sampling_beam_width
text_list = text_list * sampling_beam_width
proms_list = proms_list * sampling_beam_width
sequence_list = sequence_list * sampling_beam_width
stopped = torch.zeros(batch_size, device=device).bool()
scores = [ scores[i] + score for i, score in enumerate(s) ]
# append tokens
for i, ri in enumerate(r):
if stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == stop_token
if stopped.all().item():
break
# pick the best scoring candidate
# desu this is always going to be candidate 0
if sampling_beam_width:
sequence_list = [ sequence_list[0] ]
sequence_list = [self._prune(r, stop_token) for r in sequence_list]
return sequence_list
def example_usage():
cfg.trainer.backend = "local"
cfg.hyperparameters.gradient_accumulation_steps = 1
if cfg.audio_backend == "dac":
cfg.sample_rate = 44_100
from functools import partial
from einops import repeat
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model, trim_random, repeat_extend_audio, concat_audio, merge_audio
from ..engines import Engine, Engines
from ..utils import wrapper as ml
import numpy as np
import re
device = "cuda"
# mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it)
"""
if "mamba" in cfg.model.arch_type:
cfg.model.resp_levels = 1
"""
# cfg.model.loss_factors = {}
def tokenize(content):
return torch.tensor( cfg.tokenizer.encode(content) )
def _load_quants(path) -> Tensor:
qnt = np.load(path, allow_pickle=True)[()]
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.resp_levels, :].t().to(torch.int16)
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
noise = _load_quants(f"./data/noise.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
text_list = [
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
]
proms_list = [
qnt[:cfg.dataset.frames_per_second, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
resps_list = [
qnt[:, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
batch_size = len(text_list)
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
kwargs = {
'n_text_tokens': 256,
'n_audio_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
'n_heads': 16, # 4, # 16, # 24
'n_layers': 12, # 32
'n_experts': 1,
'p_dropout': 0.1,
'l_padding': 8 if cfg.optimizations.fp8 else 0,
'config': cfg.model
}
"""
try:
kwargs['config'] = cfg.model
except Exception as e:
pass
"""
bos_id, space_id, eos_id = cfg.tokenizer.encode( " " )
tasks = cfg.dataset.tasks_list
model = AR_NAR(**kwargs).to(device)
steps = 150 * len(tasks) * cfg.model.experimental.causal_size
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy"
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else ""
learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None
if cfg.optimizations.dadaptation:
# do not combine the two
if scheduler == "schedulefree":
scheduler = ""
learning_rate = 1.0
if optimizer == "prodigy":
if learning_rate is None:
learning_rate = 1.0
optimizer = ml.Prodigy
elif optimizer == "adagrad":
if learning_rate is None:
learning_rate = 1.0e-2
optimizer = ml.Adagrad
elif optimizer == "adamw":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.AdamW
elif optimizer == "sdg":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.SGD
else:
raise ValueError(f"Unrecognized optimizer: {optimizer}")
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
optimizer = optimizer(model.parameters(), lr=learning_rate)
if scheduler == "schedulefree":
if isinstance(optimizer, ml.AdamW):
scheduler = ml.schedulefree.AdamWScheduleFree
elif isinstance(optimizer, ml.SGD):
scheduler = ml.schedulefree.SGDScheduleFree
else:
scheduler = None
if scheduler is not None:
print("Scheduler:", scheduler)
optimizer = scheduler( model.parameters(), lr = learning_rate )
if cfg.optimizations.replace and cfg.optimizations.linear:
model = ml.replace_linear( model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model = ml.replace_embedding( model )
"""
cfg.optimizations.model_offloading = {
"devices": ["cuda:0", "cpu"],
# "limits": [ 0.9, -1 ],
"assign": [[ f'layers.{i}.' for i in range(0,10) ], [ f'layers.{i}.' for i in range(11,12) ] + [ "model.norm" ]],
# "limits": [ 256 * (1024 ** 2), -1 ]
}
"""
engine = Engine(model=model, optimizer=optimizer)
engines = Engines({"ar+nar": engine})
engines.setup()
if cfg.optimizations.model_offloading:
model = ml.offload_model( model, policy=cfg.optimizations.model_offloading )
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
print(f"AR+NAR ({cfg.model.arch_type}, {cfg.audio_backend}) parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@torch.no_grad()
def sample_data(task=None):
texts = []
proms = []
resps = []
for i in range(batch_size):
if task is None:
task = random.choice(tasks)
text = text_list[i]
prom = proms_list[i]
resp = resps_list[i]
# do nothing
if task == "tts":
...
elif task == "tts-c":
trim_length = int(random.uniform(cfg.dataset.prompt_duration_range[0], cfg.dataset.prompt_duration_range[1]) * cfg.dataset.frames_per_second)
prom = resp[:trim_length]
resp = resp[trim_length:]
elif task == "ns" or task == "sr":
# extend the noise to fill the target audio
noise_ext = repeat_extend_audio( noise, resp.shape[0] )
# create the input prompt by merging the target audio with the noise
prom = merge_audio( resp.cpu(), noise_ext, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device )
# set the target to just be the noise if <sr>
if task == "sr":
resp = noise_ext
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = torch.tensor([bos_id, eos_id]).to(device=device, dtype=torch.uint8)
texts.append( text.to(device) )
proms.append( prom.to(device) )
resps.append( resp.to(device) )
return texts, proms, resps
@torch.inference_mode()
def sample( name, steps=1000, task=None ):
engine.eval()
texts, proms, resps = sample_data( task )
if "ar" in cfg.model.capabilities:
resps = engine( texts, proms, max_steps=steps, sampling_temperature=0.95 )
if "nar" in cfg.model.capabilities:
resps = engine( texts, proms, resps, sampling_temperature=0.2 )
for i, o in enumerate(resps):
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{task}.{name}.wav", device=device)
unload_model()
def train():
engine.train()
t = trange(steps)
for i in t:
texts, proms, resps = sample_data()
stats = {"step": i}
stats |= engine.traverse(text_list=texts, proms_list=proms, resps_list=resps)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
#sample("init", 5)
train()
for task in tasks:
sample("final", task=task)
engines.quit()
if __name__ == "__main__":
example_usage()