vall-e/vall_e/models/ar_nar.py

495 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from .base import Base, list_to_tensor, Categorical
from ..config import cfg
import torch
from torch.nn.utils.rnn import pad_sequence
import random
import math
from einops import rearrange
from torch import Tensor
from tqdm import trange
from ..emb.qnt import trim
class AR_NAR(Base):
@property
def causal(self):
return True
@property
def norm_type(self):
return "ln" # if self.n_resp_levels == 1 else "adaln"
@property
def arch_type(self) -> str:
if hasattr(self, "config") and self.config:
return self.config.arch_type
return cfg.model.arch_type
@property
def n_prom_levels(self) -> int:
return cfg.model.prom_levels
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.model.resp_levels
@property
def n_max_levels(self) -> int:
return cfg.model.max_levels
@property
def n_tasks(self) -> int:
return cfg.model.tasks
@property
def n_langs(self) -> int:
return cfg.model.langs
@property
def n_tones(self) -> int:
return cfg.model.tones
@property
def recurrent_chunk_size(self) -> int:
return 0
"""
@property
def rotary_embedding_base(self) -> float:
if hasattr(self, "config") and self.config:
return self.config.rotary_embedding_base
return cfg.model.rotary_embedding_base
"""
@property
def interleave(self) -> bool:
return False
@property
def monolithic(self) -> bool:
return True
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.model.version
def _prune(self, l: Tensor):
indices = (l == self.stop_token).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
max_steps: int = 1000,
max_levels: int = 0,
max_resp_context: int = -1,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
):
device = text_list[0].device
batch_size = len(text_list)
# is training or NAR
if resps_list is not None:
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))
# is training
if n_levels == self.n_resp_levels:
# might be better to have this decided on the dataloader level
if cfg.experimental:
# makes higher levels less likely
def generate( lo=0, hi=8 ):
index = lo
p = random.random()
for i in range(lo, hi):
if p < 1.0 / (2 ** i):
index = i
return int(index)
quant_levels = torch.Tensor([ generate(0, self.n_resp_levels) for _ in range(batch_size) ]).to(dtype=torch.int16)
else:
quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
"""
if cfg.model.p_ar_level == "auto" or cfg.model.p_ar_level is None:
quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
else:
quant_levels = torch.Tensor([ 0 if random.random() < cfg.model.p_ar_level else random.randint(1, self.n_resp_levels) for _ in range(batch_size) ])
"""
targ_list = [r[..., l] for r, l in zip(resps_list, quant_levels)] # ensures we only have 1 RVQ-bin (our target)
resps_list = [r[..., 0] if l == 0 else r[..., :l] for r, l in zip(resps_list, quant_levels)] # r if l == 0 is technically correct since only r[:, 0] is passed through the embedding, but this should save some VRAM
"""
if cfg.experimental:
proms_list = [ r if l == 0 else trim(r, cfg.dataset.frames_per_second * 3) for r, l in zip(proms_list, quant_levels) ] # trim input prompt to 3 seconds
"""
# append stop tokens for AR
for i in range(batch_size):
if quant_levels[i] > 0:
continue
resps_list[i] = torch.cat([resps_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ])
targ_list[i] = torch.cat([targ_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ])
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
targ_list=targ_list,
lang_list=lang_list,
tone_list=tone_list
)
return super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
# is NAR
if max_levels == 0:
max_levels = self.n_resp_levels - 1
prev_list = resps_list
for n in trange( max_levels, desc="NAR" ):
level = prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
quant_levels = torch.full((len(text_list),), level)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=prev_list,
lang_list=lang_list,
tone_list=tone_list,
)
logits = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
resps_list = super().sample(
logits=logits,
resps_list=prev_list,
quant_levels=quant_levels,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
#length_penalty=sampling_length_penalty,
#beam_width=sampling_beam_width,
#mirostat=mirostat,
)
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list
# is AR
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
stopped = torch.zeros(batch_size, device=device).bool()
recurrent_state = [] if cfg.inference.recurrent_forward else None
mirostat = [
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if sampling_mirostat_tau > 0.0 else None
scores = [ 1.0 ] * sampling_beam_width
if self.interleave:
max_steps *= self.n_prom_levels
# get next in sequence
for n in trange(max_steps // max(1, self.recurrent_chunk_size), desc="AR"):
# experimental rolling response to avoid too-long perplexity hits despite RetNet allegedly fixing this.
# UNTESTED. In theory it would be better to also adjust the text, but there's no way of correlating text to segment of audio without something like wav2vec2
if max_resp_context > 0:
resps_list = self._unsqueeze_list([ sequence[-max_resp_context:] for sequence in sequence_list ] )
else:
resps_list = self._unsqueeze_list(sequence_list)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
)
if recurrent_state is not None:
logits, recurrent_state = super().forward(
inputs=inputs,
state=recurrent_state,
)
else:
logits = super().forward(
inputs=inputs,
state=recurrent_state,
)
r = super().sample(
logits=logits,
resps_list=resps_list,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
length_penalty=sampling_length_penalty,
beam_width=sampling_beam_width,
mirostat=mirostat,
)
if mirostat is not None:
# r is the state
mirostat = r
# extract token from state
r = [ state["token"] for state in mirostat ]
# we do it here because the sampler will already expand our logits list
elif sampling_beam_width > 0:
# expand tuple
r, s = r
# first step, expand batch
if batch_size == 1:
batch_size = sampling_beam_width
text_list = text_list * sampling_beam_width
proms_list = proms_list * sampling_beam_width
sequence_list = sequence_list * sampling_beam_width
stopped = torch.zeros(batch_size, device=device).bool()
scores = [ scores[i] + score for i, score in enumerate(s) ]
# append tokens
for i, ri in enumerate(r):
if self.stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == self.stop_token
if stopped.all().item():
break
# pick the best scoring candidate
# desu this is always going to be candidate 0
if sampling_beam_width:
sequence_list = [ sequence_list[0] ]
return [self._prune(r) for r in sequence_list]
def example_usage():
#cfg.trainer.backend = "local"
cfg.hyperparameters.gradient_accumulation_steps = 1
if cfg.audio_backend == "dac":
cfg.sample_rate = 44_000
from functools import partial
from einops import repeat
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model
from ..engines import Engine
from ..utils import wrapper as ml
import numpy as np
import re
device = "cuda"
x8 = partial(repeat, pattern="t -> t l", l=cfg.model.prom_levels)
def tokenize(content):
return torch.tensor( cfg.tokenizer.encode(content) )
def _load_quants(path) -> Tensor:
qnt = np.load(path, allow_pickle=True)[()]
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.prom_levels, :].t().to(torch.int16)
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
text_list = [
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
]
proms_list = [
qnt[:cfg.dataset.frames_per_second, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
resps_list = [
qnt[:, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
kwargs = {
'n_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
'n_heads': 16, # 4, # 16, # 24
'n_layers': 8, # 32
'n_experts': 1,
'p_dropout': 0.1,
'l_padding': 8 if cfg.optimizations.fp8 else 0,
'config': cfg.model
}
"""
try:
kwargs['config'] = cfg.model
except Exception as e:
pass
"""
model = AR_NAR(**kwargs).to(device)
steps = 200
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.cfg_path is not None else "prodigy"
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.cfg_path is not None else ""
learning_rate = cfg.hyperparameters.learning_rate if cfg.cfg_path is not None else None
if cfg.optimizations.dadaptation:
# do not combine the two
if scheduler == "schedulefree":
scheduler = ""
learning_rate = 1.0
if optimizer == "prodigy":
if learning_rate is None:
learning_rate = 1.0
optimizer = ml.Prodigy
elif optimizer == "adagrad":
if learning_rate is None:
learning_rate = 1.0e-2
optimizer = ml.Adagrad
elif optimizer == "adamw":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.AdamW
elif optimizer == "sdg":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.SGD
else:
raise ValueError(f"Unrecognized optimizer: {optimizer}")
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
optimizer = optimizer(model.parameters(), lr=learning_rate)
if scheduler == "schedulefree":
if isinstance(optimizer, ml.AdamW):
scheduler = ml.schedulefree.AdamWScheduleFree
elif isinstance(optimizer, ml.SGD):
scheduler = ml.schedulefree.SGDScheduleFree
else:
scheduler = None
if scheduler is not None:
print("Scheduler:", scheduler)
optimizer = scheduler( model.parameters(), lr = learning_rate )
if cfg.optimizations.replace and cfg.optimizations.linear:
model = ml.replace_linear( model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model = ml.replace_embedding( model )
engine = Engine(model=model, optimizer=optimizer)
torch.save( {
'module': model.state_dict()
}, "./data/test.pth" )
print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@torch.inference_mode()
def sample( name, steps=1000 ):
if cfg.audio_backend == "dac" and name == "init":
return
engine.eval()
resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
if cfg.audio_backend != "dac":
for i, o in enumerate(resps_list):
_ = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
resps_list = [r.unsqueeze(-1) for r in resps_list]
resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
for i, o in enumerate(resps_list):
_ = decode_to_file(o, f"data/ar+nar.{i}.{name}.wav", device=device)
unload_model()
def train():
engine.train()
t = trange(steps)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
torch.save( {
'module': model.state_dict()
}, "./data/test.pth" )
sample("init", 5)
train()
sample("final")
if __name__ == "__main__":
example_usage()