An unofficial PyTorch implementation of VALL-E
Go to file
2023-01-13 13:35:06 +08:00
config AdaLN and sample-wise quant level sampling 2023-01-13 00:33:16 +08:00
data/test AdaLN and sample-wise quant level sampling 2023-01-13 00:33:16 +08:00
scripts Make more VRAM friendly 2023-01-12 20:07:44 +08:00
vall_e Add AdaNorm to AdaLN 2023-01-13 02:16:28 +08:00
.gitignore Python version 2023-01-12 20:37:04 +08:00
.gitmodules
LICENSE Create LICENSE 2023-01-12 15:01:26 +08:00
README.md Update 2023-01-13 01:08:13 +08:00
requirements.txt
setup.py Remove dirty flag 2023-01-13 13:35:06 +08:00
vall-e.png Update 2023-01-13 01:08:13 +08:00

VALL-E

An unofficial PyTorch implementation of VALL-E, based on the EnCodec tokenizer.

"Buy Me A Coffee"

Install

pip install git+https://github.com/enhuiz/vall-e

Note that the code is only tested under Python 3.10.7.

Usage

  1. Put your data into a folder, e.g. data/your_data. Audio files should be named with the suffix .wav and text files with .normalized.txt.

  2. Quantize the data:

python -m vall_e.emb.qnt data/your_data
  1. Generate phonemes based on the text:
python -m vall_e.emb.g2p data/your_data
  1. Customize your configuration by creating config/your_data/ar.yml and config/your_data/nar.yml. Refer to the example configs in config/test and vall_e/config.py for details. You may choose different model presets, check vall_e/vall_e/__init__.py.

  2. Train the AR or NAR model using the following scripts:

python -m vall_e.train yaml=config/your_data/ar_or_nar.yml

TODO

  • AR model for the first quantizer
  • Audio decoding from tokens
  • NAR model for the rest quantizers
  • Trainers for both models
  • Implement AdaLN for NAR model.
  • Sample-wise quantization level sampling for NAR training.
  • Pre-trained checkpoint and demos on LibriTTS

Citations

@article{wang2023neural,
  title={Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers},
  author={Wang, Chengyi and Chen, Sanyuan and Wu, Yu and Zhang, Ziqiang and Zhou, Long and Liu, Shujie and Chen, Zhuo and Liu, Yanqing and Wang, Huaming and Li, Jinyu and others},
  journal={arXiv preprint arXiv:2301.02111},
  year={2023}
}
@article{defossez2022highfi,
  title={High Fidelity Neural Audio Compression},
  author={Défossez, Alexandre and Copet, Jade and Synnaeve, Gabriel and Adi, Yossi},
  journal={arXiv preprint arXiv:2210.13438},
  year={2022}
}