145 lines
5.2 KiB
C++
145 lines
5.2 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
#include "encodec.h"
|
|
|
|
#include "dr_wav.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
|
|
// to-do: copy over import/export stuff from engine project (because I don't remember how I set it up in <uf/config.h>)
|
|
#define VALL_E_API
|
|
|
|
#define LLAMA_CPP_EXTENDED 0 // whether the underlying llama.cpp has some extra functions
|
|
#define LLAMA_CPP_USE_VALL_E_ARCH 0 // whether the underlying llama.cpp is to use the VALL_E arch (or using LLAMA arch)
|
|
|
|
#if !LLAMA_CPP_EXTENDED
|
|
#include "llama_hack.h" // cringe hotfix but I have to do this until llama.cpp's API exposes the tok_embd
|
|
#endif
|
|
|
|
// to-do: clean up spaghetti enums
|
|
const int EMBEDDING_MODE_PROM = 0;
|
|
const int EMBEDDING_MODE_RESP_AR_NAR = 1;
|
|
const int EMBEDDING_MODE_RESP_NAR_LEN = 2;
|
|
|
|
const int INFERENCE_MODE_LEN = 0;
|
|
const int INFERENCE_MODE_AR = 1;
|
|
const int INFERENCE_MODE_NAR_DEMASK = 2;
|
|
const int INFERENCE_MODE_NAR = 3;
|
|
|
|
const int MODALITY_AR_NAR = 0;
|
|
const int MODALITY_NAR_LEN = 1;
|
|
|
|
const int MAX_DURATION = 75 * 12;
|
|
const int CTX_SIZE = 2048;
|
|
const int N_THREADS = 8;
|
|
const int N_GPU_LAYERS = 0;
|
|
|
|
typedef llama_token token_t;
|
|
typedef std::vector<std::vector<token_t>> vall_e_audio_codes_t;
|
|
|
|
// stores embeddings + metadata for an embedding range
|
|
struct io_t {
|
|
std::string name;
|
|
uint32_t start;
|
|
uint32_t end;
|
|
int32_t head_idx = -1;
|
|
|
|
int32_t n_embd = 0;
|
|
int32_t n_vocab = 0;
|
|
|
|
std::vector<float> embds = {};
|
|
ggml_tensor* head = NULL;
|
|
};
|
|
|
|
// stores the mappings between tokens, input embeddings, and output heads
|
|
struct io_map_t {
|
|
// model's original params
|
|
int32_t n_embd = 0;
|
|
int32_t n_vocab = 0;
|
|
|
|
// mapping
|
|
std::unordered_map<std::string, io_t> io = {};
|
|
// context to store slices
|
|
ggml_context* ctx = NULL;
|
|
};
|
|
|
|
struct score_t {
|
|
int32_t idx;
|
|
float value;
|
|
|
|
bool operator<( const score_t& that ) const { return this->value < that.value; }
|
|
};
|
|
|
|
struct vall_e_context_params_t {
|
|
std::string model_path;
|
|
std::string encodec_path;
|
|
int32_t gpu_layers = N_GPU_LAYERS;
|
|
int32_t cpu_threads = N_THREADS;
|
|
int32_t ctx_size = CTX_SIZE;
|
|
bool verbose = false;
|
|
};
|
|
// stores everything needed for vall_e.cpp
|
|
struct vall_e_context_t {
|
|
vall_e_context_params_t params;
|
|
|
|
io_map_t io_map;
|
|
|
|
struct {
|
|
llama_model* model = NULL;
|
|
llama_context* ctx = NULL;
|
|
} llama;
|
|
|
|
struct {
|
|
encodec_context* ctx;
|
|
} encodec;
|
|
};
|
|
// stores the raw inputs to be fed
|
|
struct vall_e_inputs_t {
|
|
std::string task = "tts";
|
|
|
|
std::vector<token_t> phn = {};
|
|
token_t lang = 0;
|
|
token_t rvq_l = 0;
|
|
vall_e_audio_codes_t prom = {};
|
|
vall_e_audio_codes_t resp = {};
|
|
};
|
|
|
|
// helper tensor functions
|
|
std::vector<float> VALL_E_API read_2d_tensor( struct ggml_tensor* tensor );
|
|
//ggml_tensor* VALL_E_API view_2d_tensor( ggml_tensor* tensor, int32_t start, int32_t end, int32_t dim = 0 ); // cringe method to keep in my pocket
|
|
ggml_tensor* VALL_E_API view_2d_tensor( ggml_context* ctx, ggml_tensor* tensor, int32_t start, int32_t end, int32_t dim = 0 );
|
|
void VALL_E_API print_tokens( const std::vector<token_t>& tokens, const std::string& prefix = "Tokens: " );
|
|
|
|
std::vector<std::vector<float>> VALL_E_API map_embeddings( const std::vector<token_t>& tokens, int n_embd, const float* embds );
|
|
std::vector<std::vector<float>> VALL_E_API sum_embeddings( const vall_e_audio_codes_t& input, int n_embd, int rvq_l, const float** embds, int mode = EMBEDDING_MODE_PROM );
|
|
std::vector<float> VALL_E_API soft_max( int n_logits, const float* logits );
|
|
|
|
// batch and inferencing
|
|
void VALL_E_API batch_add( llama_batch& batch, token_t id, int n_embd, const float* embds, llama_pos pos, bool output, const std::vector<llama_seq_id> & seq_ids = {0} );
|
|
void VALL_E_API fill_batch( llama_batch& batch, vall_e_inputs_t& input, io_map_t& inputs_map, int mode );
|
|
std::vector<token_t> VALL_E_API generate( vall_e_context_t* ctx, vall_e_inputs_t& input, int max_tokens, int mode, bool verbose = true );
|
|
|
|
//
|
|
std::vector<token_t> VALL_E_API phonemize( vall_e_context_t* ctx, const std::string& text, const std::string& language = "auto" );
|
|
|
|
// encodec helpers
|
|
std::vector<float> VALL_E_API read_audio_from_disk( const std::string& path );
|
|
void VALL_E_API write_audio_to_disk( const std::vector<float>& waveform, const std::string& path );
|
|
|
|
std::vector<std::vector<int32_t>> VALL_E_API encode_audio( struct encodec_context* ectx, const std::vector<float>& waveform );
|
|
std::vector<float> VALL_E_API decode_audio( struct encodec_context* ectx, const std::vector<std::vector<int32_t>>& codes_2d );
|
|
|
|
// model-accessing helpers
|
|
const io_t& VALL_E_API vall_e_inputs_map_get_embeddings( io_map_t& inputs_map, const std::string& name );
|
|
const float* VALL_E_API vall_e_inputs_map_get_embeddings_p( io_map_t& inputs_map, const std::string& name );
|
|
int32_t VALL_E_API vall_e_inputs_map_get_classifier_idx( io_map_t& inputs_map, const std::string& name );
|
|
void VALL_E_API vall_e_inputs_map_init( io_map_t&, llama_model* model );
|
|
|
|
// context management
|
|
vall_e_context_t* VALL_E_API vall_e_load( const vall_e_context_params_t& params );
|
|
vall_e_inputs_t vall_e_prepare_inputs( vall_e_context_t* ctx, const std::string& text, const std::string& prompt_path, const std::string& lang );
|
|
vall_e_audio_codes_t vall_e_generate( vall_e_context_t* ctx, vall_e_inputs_t& inputs, int modality = MODALITY_NAR_LEN );
|
|
void VALL_E_API vall_e_free( vall_e_context_t* ctx ); |