vall-e/vall_e/emb/transcribe.py
2024-10-08 19:24:43 -05:00

190 lines
5.3 KiB
Python

"""
# Handles transcribing audio provided through --input-audio
"""
import os
import json
import argparse
import torch
import torchaudio
import whisperx
from tqdm.auto import tqdm
from pathlib import Path
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
def process_items( items, stride=0, stride_offset=0 ):
items = sorted( items )
return items if stride == 0 else [ item for i, item in enumerate( items ) if (i+stride_offset) % stride == 0 ]
def transcribe(
input_audio = "voices",
input_voice = None,
output_metadata = "training/metadata",
model_name = "large-v3",
skip_existing = True,
diarize = False,
stride = 0,
stride_offset = 0,
batch_size = 16,
device = "cuda",
dtype = "float16",
):
# to-do: make this also prepared from args
language_map = {} # k = group, v = language
ignore_groups = [] # skip these groups
ignore_speakers = [] # skip these speakers
only_groups = [] # only process these groups
only_speakers = [] # only process these speakers
if input_voice is not None:
only_speakers = [input_voice]
#
model = whisperx.load_model(model_name, device, compute_type=dtype)
align_model, align_model_metadata, align_model_language = (None, None, None)
if diarize:
diarize_model = whisperx.DiarizationPipeline(device=device)
else:
diarize_model = None
for dataset_name in os.listdir(f'./{input_audio}/'):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
continue
if group_name in ignore_groups:
continue
if only_groups and group_name not in only_groups:
continue
for speaker_id in tqdm(process_items(os.listdir(f'./{input_audio}/{dataset_name}/')), desc="Processing speaker"):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/{speaker_id}'):
continue
if speaker_id in ignore_speakers:
continue
if only_speakers and speaker_id not in only_speakers:
continue
outpath = Path(f'./{output_metadata}/{dataset_name}/{speaker_id}/whisper.json')
if outpath.exists():
metadata = json.loads(open(outpath, 'r', encoding='utf-8').read())
else:
os.makedirs(f'./{output_metadata}/{dataset_name}/{speaker_id}/', exist_ok=True)
metadata = {}
for filename in tqdm(os.listdir(f'./{input_audio}/{dataset_name}/{speaker_id}/'), desc=f"Processing speaker: {speaker_id}"):
if skip_existing and filename in metadata:
continue
if ".json" in filename:
continue
inpath = f'./{input_audio}/{dataset_name}/{speaker_id}/{filename}'
if os.path.isdir(inpath):
continue
metadata[filename] = {
"segments": [],
"language": "",
"text": "",
"start": 0,
"end": 0,
}
audio = whisperx.load_audio(inpath)
result = model.transcribe(audio, batch_size=batch_size)
language = result["language"]
"""
if language[:2] not in ["ja"]:
language = "en"
"""
if align_model_language != language:
tqdm.write(f'Loading language: {language}')
align_model, align_model_metadata = whisperx.load_align_model(language_code=language, device=device)
align_model_language = language
result = whisperx.align(result["segments"], align_model, align_model_metadata, audio, device, return_char_alignments=False)
metadata[filename]["segments"] = result["segments"]
metadata[filename]["language"] = language
if diarize_model is not None:
diarize_segments = diarize_model(audio)
result = whisperx.assign_word_speakers(diarize_segments, result)
text = []
start = 0
end = 0
for segment in result["segments"]:
text.append( segment["text"] )
start = min( start, segment["start"] )
end = max( end, segment["end"] )
metadata[filename]["text"] = " ".join(text).strip()
metadata[filename]["start"] = start
metadata[filename]["end"] = end
open(outpath, 'w', encoding='utf-8').write(json.dumps(metadata))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--input-audio", type=str, default="voices")
parser.add_argument("--input-voice", type=str, default=None)
parser.add_argument("--output-metadata", type=str, default="training/metadata")
parser.add_argument("--model-name", type=str, default="large-v3")
parser.add_argument("--skip-existing", action="store_true")
parser.add_argument("--diarize", action="store_true")
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--stride", type=int, default=0)
parser.add_argument("--stride-offset", type=int, default=0)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--amp", action="store_true")
# parser.add_argument("--raise-exceptions", action="store_true")
args = parser.parse_args()
# do some assumption magic
# to-do: find a nice way to spawn multiple processes where tqdm plays nicely
if args.device.isnumeric():
args.stride = torch.cuda.device_count()
args.stride_offset = int(args.device)
args.device = f'cuda:{args.device}'
transcribe(
input_audio = args.input_audio,
input_voice = args.input_voice,
output_metadata = args.output_metadata,
model_name = args.model_name,
skip_existing = args.skip_existing,
diarize = args.diarize,
stride = args.stride,
stride_offset = args.stride_offset,
batch_size = args.batch_size,
device = args.device,
dtype = args.dtype,
)
if __name__ == "__main__":
main()