497 lines
14 KiB
Python
497 lines
14 KiB
Python
"""
|
||
A (mostly) NAR model that handles inferencing all RVQ levels in parallel (NAR).
|
||
I believe Meta's Voicebox does this too (predict the utterance length, then decode in parallel)
|
||
It *does* have to inference the initial length in an autoregresssive-ish manner (it can technically also be done in parallel)
|
||
|
||
Initial experiments show this only really "works" for the a few brief seconds before going to silence. I imagine I need to read more papers or just need to train longer.
|
||
"""
|
||
|
||
from .base import Base, list_to_tensor, Categorical
|
||
from ..config import cfg
|
||
|
||
import torch
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
|
||
import random
|
||
import math
|
||
from einops import rearrange
|
||
from torch import Tensor
|
||
from tqdm import trange
|
||
|
||
from ..emb.qnt import trim
|
||
|
||
class NAR(Base):
|
||
@property
|
||
def capabilities(self) -> list[str]:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.capabilities
|
||
return cfg.model.capabilities
|
||
|
||
@property
|
||
def causal(self):
|
||
return "len" in self.capabilities
|
||
|
||
@property
|
||
def n_resp_levels(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.resp_levels
|
||
return cfg.model.resp_levels
|
||
|
||
@property
|
||
def n_max_levels(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.max_levels
|
||
return cfg.model.max_levels
|
||
|
||
@property
|
||
def n_tasks(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.tasks
|
||
return cfg.model.tasks
|
||
|
||
@property
|
||
def n_langs(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.langs
|
||
return cfg.model.langs
|
||
|
||
@property
|
||
def n_tones(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.tones
|
||
return cfg.model.tones
|
||
|
||
@property
|
||
def causal_size(self) -> int:
|
||
# 1 for the stop token
|
||
# governs how much to shift the logits by
|
||
# could *technically* make it work to where it can also predict *ALL* RVQ levels in one step, but experimental.py is the better way to go about it
|
||
return 1 # if self.causal else 0
|
||
|
||
@property
|
||
def version(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.version
|
||
return cfg.model.version
|
||
|
||
def _prune(self, l: Tensor, stop = None):
|
||
if stop is None:
|
||
stop = self.stop_token
|
||
indices = (l == stop).nonzero()
|
||
if len(indices) == 0:
|
||
return l
|
||
return l[: indices.min().item()]
|
||
|
||
@staticmethod
|
||
def _unsqueeze_list(x_list, axis=-1):
|
||
return [x.unsqueeze(dim=axis) for x in x_list]
|
||
|
||
def forward(
|
||
self,
|
||
text_list: list[Tensor],
|
||
proms_list: list[Tensor],
|
||
resps_list: list[Tensor] | None = None,
|
||
|
||
task_list: list[Tensor] | None = None,
|
||
lang_list: list[Tensor] | None = None,
|
||
tone_list: list[Tensor] | None = None,
|
||
len_list: list[Tensor] | None = None,
|
||
|
||
training: bool | None = None,
|
||
|
||
max_steps: int = 1000,
|
||
max_levels: int = 0,
|
||
max_resp_context: int = -1,
|
||
|
||
sampling_temperature: float = 1.0,
|
||
sampling_min_temperature: float = -1.0,
|
||
sampling_top_k: int = -100,
|
||
sampling_top_p: float = 1.0,
|
||
sampling_repetition_penalty: float = 1.0,
|
||
sampling_repetition_penalty_decay: float = 0.0,
|
||
sampling_length_penalty: float = 0.0,
|
||
sampling_beam_width: int = 0,
|
||
sampling_mirostat_tau: float = 0.0,
|
||
sampling_mirostat_eta: float = 0.1,
|
||
|
||
disable_tqdm=False,
|
||
):
|
||
device = text_list[0].device
|
||
batch_size = len(text_list)
|
||
|
||
# is training
|
||
if resps_list is not None:
|
||
p_len_task = 0.25
|
||
|
||
n_levels_set = {r.shape[-1] for r in resps_list}
|
||
n_levels = next(iter(n_levels_set))
|
||
|
||
# assert n_levels == self.n_resp_levels
|
||
|
||
# to-do: make this YAML configurable
|
||
def sample_task():
|
||
return "len" if random.random() < p_len_task else "tts"
|
||
|
||
# generate task list to train against
|
||
task_list = [ sample_task() for _ in range(batch_size) ]
|
||
|
||
# specifies how to sample probabilities of which RVQ levels to train against
|
||
p_rvq_levels = self.config.experimental.p_rvq_levels if self.config is not None else "equal"
|
||
# determines which RVQ level to target per batch
|
||
quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ]
|
||
# rate to perform token dropout errors
|
||
token_dropout_error = self.config.experimental.token_dropout_error
|
||
# RVQ levels to apply token dropout on
|
||
token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels
|
||
# implicitly set it to all levels
|
||
if not token_dropout_rvq_levels:
|
||
token_dropout_rvq_levels = [0, self.resp_levels - 1]
|
||
# allow passing a specific distribution of RVQ levels
|
||
p_rvq_levels = p_rvq_levels if isinstance(p_rvq_levels, list) else []
|
||
if not p_rvq_levels:
|
||
lo, hi = quant_level_range[0], quant_level_range[1] + 1
|
||
# randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
|
||
if p_rvq_levels == "equal":
|
||
p_rvq_levels = [ i for i in range( lo, hi ) ]
|
||
else:
|
||
# yuck
|
||
p_rvq_levels = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], [])
|
||
|
||
# input RVQ levels
|
||
quant_levels = [ random.choice( p_rvq_levels ) for i in range(batch_size) ]
|
||
# trim resps to only contain all levels below the target level
|
||
resps_list = [r[..., :l+1] for r, l in zip(resps_list, quant_levels)]
|
||
|
||
# I hate python's value/reference semantics so much
|
||
for i, quant_level, resps, proms in zip(range(batch_size), quant_levels, resps_list, proms_list):
|
||
# cap quant_level if it exceeds its corresponding resp/prom
|
||
if quant_level >= resps.shape[-1]:
|
||
quant_levels[i] = resps.shape[-1] - 1
|
||
|
||
# proms could be a Tensor, list[Tensor], or None
|
||
if isinstance( proms, torch.Tensor ):
|
||
if quant_level >= proms.shape[-1]:
|
||
quant_levels[i] = proms.shape[-1] - 1
|
||
|
||
elif isinstance( proms, list ):
|
||
for j, prom in enumerate( proms ):
|
||
if not isinstance( prom, torch.Tensor ):
|
||
continue
|
||
|
||
if quant_level >= prom.shape[-1]:
|
||
quant_levels[i] = prom.shape[-1] - 1
|
||
|
||
# apply token dropout error compensation
|
||
if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]):
|
||
steps = resps.shape[0]
|
||
for l in range( quant_level ):
|
||
for t in range( steps ):
|
||
token = resps[t, l].item()
|
||
|
||
if random.random() < token_dropout_error:
|
||
offset = 1 * ( 1 if random.random() < 0.5 else -1 )
|
||
resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1
|
||
|
||
inputs = self.inputs(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=resps_list,
|
||
lang_list=lang_list,
|
||
tone_list=tone_list,
|
||
task_list=task_list,
|
||
|
||
quant_levels=quant_levels,
|
||
)
|
||
|
||
return super().forward(
|
||
inputs=inputs,
|
||
quant_levels=quant_levels,
|
||
)
|
||
|
||
# NAR
|
||
if len_list is not None:
|
||
# is NAR
|
||
if max_levels == 0:
|
||
max_levels = self.n_resp_levels
|
||
|
||
# fill with mock tokens
|
||
prev_list = [ torch.Tensor([ self.stop_token for _ in range(resp_len) ]).to(device=device, dtype=torch.int16) for resp_len in len_list ]
|
||
|
||
start = True
|
||
for n in trange( max_levels, desc="NAR", disable=disable_tqdm ):
|
||
level = 0 if n == 0 else prev_list[0].shape[-1]
|
||
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
|
||
break
|
||
|
||
quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level)
|
||
|
||
inputs = self.inputs(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=prev_list,
|
||
lang_list=lang_list,
|
||
tone_list=tone_list,
|
||
quant_levels=quant_levels,
|
||
)
|
||
|
||
logits = super().forward(
|
||
inputs=inputs,
|
||
quant_levels=quant_levels,
|
||
)
|
||
|
||
"""
|
||
resps_list = [ logit[-l:].argmax(dim=1) for logit, l in zip(logits, len_list) ]
|
||
"""
|
||
|
||
resps_list = super().sample(
|
||
logits=logits,
|
||
resps_list=prev_list,
|
||
quant_levels=quant_levels,
|
||
|
||
temperature=1.0 if n == 0 else sampling_temperature,
|
||
min_temperature=sampling_min_temperature,
|
||
top_p=sampling_top_p,
|
||
top_k=sampling_top_k,
|
||
repetition_penalty=sampling_repetition_penalty,
|
||
repetition_penalty_decay=sampling_repetition_penalty_decay,
|
||
#length_penalty=sampling_length_penalty,
|
||
#beam_width=sampling_beam_width,
|
||
#mirostat=mirostat,
|
||
)
|
||
|
||
if n == 0:
|
||
prev_list = [ r.unsqueeze(-1).to(device) for r in resps_list ]
|
||
else:
|
||
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
|
||
|
||
return prev_list
|
||
|
||
# is AR
|
||
sequence_list = [ torch.Tensor([0]).to(device=device,dtype=torch.int16) for _ in range(batch_size) ]
|
||
stopped = torch.zeros(batch_size, device=device).bool()
|
||
|
||
stop_token = 10
|
||
task_list = [ "len" for _ in range(batch_size) ]
|
||
|
||
for n in trange(10, desc="AR", disable=disable_tqdm):
|
||
len_list = sequence_list
|
||
|
||
inputs = self.inputs(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=resps_list,
|
||
lang_list=lang_list,
|
||
tone_list=tone_list,
|
||
len_list=len_list,
|
||
task_list=task_list,
|
||
quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
|
||
)
|
||
|
||
logits = super().forward(
|
||
inputs=inputs,
|
||
)
|
||
|
||
r = [ logit[-1:].argmax(dim=1) for logit in logits ]
|
||
# sanitize
|
||
for i, token in enumerate(r):
|
||
if token > 10:
|
||
r[i][0] = stop_token
|
||
|
||
# append tokens
|
||
for i, ri in enumerate(r):
|
||
if stop_token in ri:
|
||
stopped[i] = True
|
||
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
|
||
|
||
# stop token found
|
||
stopped |= r == stop_token
|
||
if stopped.all().item():
|
||
break
|
||
|
||
# convert tokens into int
|
||
return [ int("".join([ str(token.item()) for token in r if token != stop_token ])) for r in sequence_list ]
|
||
|
||
|
||
def example_usage():
|
||
cfg.trainer.backend = "local"
|
||
cfg.hyperparameters.gradient_accumulation_steps = 1
|
||
if cfg.audio_backend == "dac":
|
||
cfg.sample_rate = 44_100
|
||
|
||
from functools import partial
|
||
from einops import repeat
|
||
from tqdm import tqdm
|
||
|
||
from ..emb.qnt import decode_to_file, unload_model
|
||
from ..engines import Engine
|
||
from ..utils import wrapper as ml
|
||
|
||
import numpy as np
|
||
import re
|
||
|
||
device = "cuda"
|
||
|
||
# mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it)
|
||
"""
|
||
if "mamba" in cfg.model.arch_type:
|
||
cfg.model.resp_levels = 1
|
||
"""
|
||
# cfg.model.loss_factors = {}
|
||
|
||
def tokenize(content):
|
||
return torch.tensor( cfg.tokenizer.encode(content) )
|
||
|
||
def _load_quants(path) -> Tensor:
|
||
qnt = np.load(path, allow_pickle=True)[()]
|
||
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.resp_levels, :].t().to(torch.int16)
|
||
|
||
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
|
||
|
||
|
||
text_list = [
|
||
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
|
||
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
|
||
]
|
||
proms_list = [
|
||
qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
]
|
||
resps_list = [
|
||
qnt[:, :].to(device),
|
||
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
]
|
||
|
||
text_list = text_list[:1]
|
||
proms_list = proms_list[:1]
|
||
resps_list = resps_list[:1]
|
||
|
||
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
|
||
kwargs = {
|
||
'n_text_tokens': 256,
|
||
'n_audio_tokens': 1024,
|
||
|
||
'd_model': 1024, # 256, # 1024, # 1536
|
||
'n_heads': 16, # 4, # 16, # 24
|
||
'n_layers': 12, # 32
|
||
'n_experts': 1,
|
||
|
||
'p_dropout': 0.1,
|
||
|
||
'l_padding': 8 if cfg.optimizations.fp8 else 0,
|
||
|
||
'config': cfg.model
|
||
}
|
||
|
||
"""
|
||
try:
|
||
kwargs['config'] = cfg.model
|
||
except Exception as e:
|
||
pass
|
||
"""
|
||
|
||
model = NAR(**kwargs).to(device)
|
||
steps = 250
|
||
|
||
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy"
|
||
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else ""
|
||
learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None
|
||
|
||
if cfg.optimizations.dadaptation:
|
||
# do not combine the two
|
||
if scheduler == "schedulefree":
|
||
scheduler = ""
|
||
|
||
learning_rate = 1.0
|
||
|
||
if optimizer == "prodigy":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0
|
||
|
||
optimizer = ml.Prodigy
|
||
elif optimizer == "adagrad":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-2
|
||
|
||
optimizer = ml.Adagrad
|
||
elif optimizer == "adamw":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-4
|
||
|
||
optimizer = ml.AdamW
|
||
elif optimizer == "sdg":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-4
|
||
|
||
optimizer = ml.SGD
|
||
else:
|
||
raise ValueError(f"Unrecognized optimizer: {optimizer}")
|
||
|
||
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
|
||
|
||
optimizer = optimizer(model.parameters(), lr=learning_rate)
|
||
|
||
if scheduler == "schedulefree":
|
||
if isinstance(optimizer, ml.AdamW):
|
||
scheduler = ml.schedulefree.AdamWScheduleFree
|
||
elif isinstance(optimizer, ml.SGD):
|
||
scheduler = ml.schedulefree.SGDScheduleFree
|
||
else:
|
||
scheduler = None
|
||
|
||
if scheduler is not None:
|
||
print("Scheduler:", scheduler)
|
||
optimizer = scheduler( model.parameters(), lr = learning_rate )
|
||
|
||
if cfg.optimizations.replace and cfg.optimizations.linear:
|
||
model = ml.replace_linear( model )
|
||
|
||
if cfg.optimizations.replace and cfg.optimizations.embedding:
|
||
model = ml.replace_embedding( model )
|
||
|
||
engine = Engine(model=model, optimizer=optimizer)
|
||
|
||
"""
|
||
torch.save( {
|
||
'module': model.state_dict()
|
||
}, f"./data/{cfg.model.arch_type}.pth" )
|
||
"""
|
||
|
||
print(f"NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
||
|
||
@torch.inference_mode()
|
||
def sample( name, steps=1000 ):
|
||
if cfg.audio_backend == "dac" and name == "init":
|
||
return
|
||
|
||
engine.eval()
|
||
|
||
len_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
|
||
resps_list = engine( text_list, proms_list, len_list=len_list, sampling_temperature=0.2 )
|
||
|
||
for i, o in enumerate(resps_list):
|
||
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
|
||
|
||
unload_model()
|
||
|
||
def train():
|
||
engine.train()
|
||
t = trange(steps)
|
||
for i in t:
|
||
stats = {"step": i}
|
||
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
||
stats |= {"grad_norm": engine.get_global_grad_norm()}
|
||
|
||
tqdm.write(f"{stats}")
|
||
|
||
"""
|
||
torch.save( {
|
||
'module': model.state_dict()
|
||
}, f"./data/{cfg.model.arch_type}.pth" )
|
||
"""
|
||
|
||
#sample("init", 5)
|
||
train()
|
||
sample("final")
|
||
|
||
if __name__ == "__main__":
|
||
example_usage() |