vall-e/vall_e/models/nar.py

497 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
A (mostly) NAR model that handles inferencing all RVQ levels in parallel (NAR).
I believe Meta's Voicebox does this too (predict the utterance length, then decode in parallel)
It *does* have to inference the initial length in an autoregresssive-ish manner (it can technically also be done in parallel)
Initial experiments show this only really "works" for the a few brief seconds before going to silence. I imagine I need to read more papers or just need to train longer.
"""
from .base import Base, list_to_tensor, Categorical
from ..config import cfg
import torch
from torch.nn.utils.rnn import pad_sequence
import random
import math
from einops import rearrange
from torch import Tensor
from tqdm import trange
from ..emb.qnt import trim
class NAR(Base):
@property
def capabilities(self) -> list[str]:
if hasattr(self, "config") and self.config:
return self.config.capabilities
return cfg.model.capabilities
@property
def causal(self):
return "len" in self.capabilities
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.model.resp_levels
@property
def n_max_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.max_levels
return cfg.model.max_levels
@property
def n_tasks(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tasks
return cfg.model.tasks
@property
def n_langs(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.langs
return cfg.model.langs
@property
def n_tones(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tones
return cfg.model.tones
@property
def causal_size(self) -> int:
# 1 for the stop token
# governs how much to shift the logits by
# could *technically* make it work to where it can also predict *ALL* RVQ levels in one step, but experimental.py is the better way to go about it
return 1 # if self.causal else 0
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.model.version
def _prune(self, l: Tensor, stop = None):
if stop is None:
stop = self.stop_token
indices = (l == stop).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
task_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
training: bool | None = None,
max_steps: int = 1000,
max_levels: int = 0,
max_resp_context: int = -1,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
disable_tqdm=False,
):
device = text_list[0].device
batch_size = len(text_list)
# is training
if resps_list is not None:
p_len_task = 0.25
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))
# assert n_levels == self.n_resp_levels
# to-do: make this YAML configurable
def sample_task():
return "len" if random.random() < p_len_task else "tts"
# generate task list to train against
task_list = [ sample_task() for _ in range(batch_size) ]
# specifies how to sample probabilities of which RVQ levels to train against
p_rvq_levels = self.config.experimental.p_rvq_levels if self.config is not None else "equal"
# determines which RVQ level to target per batch
quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ]
# rate to perform token dropout errors
token_dropout_error = self.config.experimental.token_dropout_error
# RVQ levels to apply token dropout on
token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels
# implicitly set it to all levels
if not token_dropout_rvq_levels:
token_dropout_rvq_levels = [0, self.resp_levels - 1]
# allow passing a specific distribution of RVQ levels
p_rvq_levels = p_rvq_levels if isinstance(p_rvq_levels, list) else []
if not p_rvq_levels:
lo, hi = quant_level_range[0], quant_level_range[1] + 1
# randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
if p_rvq_levels == "equal":
p_rvq_levels = [ i for i in range( lo, hi ) ]
else:
# yuck
p_rvq_levels = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], [])
# input RVQ levels
quant_levels = [ random.choice( p_rvq_levels ) for i in range(batch_size) ]
# trim resps to only contain all levels below the target level
resps_list = [r[..., :l+1] for r, l in zip(resps_list, quant_levels)]
# I hate python's value/reference semantics so much
for i, quant_level, resps, proms in zip(range(batch_size), quant_levels, resps_list, proms_list):
# cap quant_level if it exceeds its corresponding resp/prom
if quant_level >= resps.shape[-1]:
quant_levels[i] = resps.shape[-1] - 1
# proms could be a Tensor, list[Tensor], or None
if isinstance( proms, torch.Tensor ):
if quant_level >= proms.shape[-1]:
quant_levels[i] = proms.shape[-1] - 1
elif isinstance( proms, list ):
for j, prom in enumerate( proms ):
if not isinstance( prom, torch.Tensor ):
continue
if quant_level >= prom.shape[-1]:
quant_levels[i] = prom.shape[-1] - 1
# apply token dropout error compensation
if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]):
steps = resps.shape[0]
for l in range( quant_level ):
for t in range( steps ):
token = resps[t, l].item()
if random.random() < token_dropout_error:
offset = 1 * ( 1 if random.random() < 0.5 else -1 )
resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
task_list=task_list,
quant_levels=quant_levels,
)
return super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
# NAR
if len_list is not None:
# is NAR
if max_levels == 0:
max_levels = self.n_resp_levels
# fill with mock tokens
prev_list = [ torch.Tensor([ self.stop_token for _ in range(resp_len) ]).to(device=device, dtype=torch.int16) for resp_len in len_list ]
start = True
for n in trange( max_levels, desc="NAR", disable=disable_tqdm ):
level = 0 if n == 0 else prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=prev_list,
lang_list=lang_list,
tone_list=tone_list,
quant_levels=quant_levels,
)
logits = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
"""
resps_list = [ logit[-l:].argmax(dim=1) for logit, l in zip(logits, len_list) ]
"""
resps_list = super().sample(
logits=logits,
resps_list=prev_list,
quant_levels=quant_levels,
temperature=1.0 if n == 0 else sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
#length_penalty=sampling_length_penalty,
#beam_width=sampling_beam_width,
#mirostat=mirostat,
)
if n == 0:
prev_list = [ r.unsqueeze(-1).to(device) for r in resps_list ]
else:
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list
# is AR
sequence_list = [ torch.Tensor([0]).to(device=device,dtype=torch.int16) for _ in range(batch_size) ]
stopped = torch.zeros(batch_size, device=device).bool()
stop_token = 10
task_list = [ "len" for _ in range(batch_size) ]
for n in trange(10, desc="AR", disable=disable_tqdm):
len_list = sequence_list
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
task_list=task_list,
quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
)
logits = super().forward(
inputs=inputs,
)
r = [ logit[-1:].argmax(dim=1) for logit in logits ]
# sanitize
for i, token in enumerate(r):
if token > 10:
r[i][0] = stop_token
# append tokens
for i, ri in enumerate(r):
if stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == stop_token
if stopped.all().item():
break
# convert tokens into int
return [ int("".join([ str(token.item()) for token in r if token != stop_token ])) for r in sequence_list ]
def example_usage():
cfg.trainer.backend = "local"
cfg.hyperparameters.gradient_accumulation_steps = 1
if cfg.audio_backend == "dac":
cfg.sample_rate = 44_100
from functools import partial
from einops import repeat
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model
from ..engines import Engine
from ..utils import wrapper as ml
import numpy as np
import re
device = "cuda"
# mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it)
"""
if "mamba" in cfg.model.arch_type:
cfg.model.resp_levels = 1
"""
# cfg.model.loss_factors = {}
def tokenize(content):
return torch.tensor( cfg.tokenizer.encode(content) )
def _load_quants(path) -> Tensor:
qnt = np.load(path, allow_pickle=True)[()]
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.resp_levels, :].t().to(torch.int16)
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
text_list = [
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
]
proms_list = [
qnt[:cfg.dataset.frames_per_second, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
resps_list = [
qnt[:, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
kwargs = {
'n_text_tokens': 256,
'n_audio_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
'n_heads': 16, # 4, # 16, # 24
'n_layers': 12, # 32
'n_experts': 1,
'p_dropout': 0.1,
'l_padding': 8 if cfg.optimizations.fp8 else 0,
'config': cfg.model
}
"""
try:
kwargs['config'] = cfg.model
except Exception as e:
pass
"""
model = NAR(**kwargs).to(device)
steps = 250
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy"
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else ""
learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None
if cfg.optimizations.dadaptation:
# do not combine the two
if scheduler == "schedulefree":
scheduler = ""
learning_rate = 1.0
if optimizer == "prodigy":
if learning_rate is None:
learning_rate = 1.0
optimizer = ml.Prodigy
elif optimizer == "adagrad":
if learning_rate is None:
learning_rate = 1.0e-2
optimizer = ml.Adagrad
elif optimizer == "adamw":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.AdamW
elif optimizer == "sdg":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.SGD
else:
raise ValueError(f"Unrecognized optimizer: {optimizer}")
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
optimizer = optimizer(model.parameters(), lr=learning_rate)
if scheduler == "schedulefree":
if isinstance(optimizer, ml.AdamW):
scheduler = ml.schedulefree.AdamWScheduleFree
elif isinstance(optimizer, ml.SGD):
scheduler = ml.schedulefree.SGDScheduleFree
else:
scheduler = None
if scheduler is not None:
print("Scheduler:", scheduler)
optimizer = scheduler( model.parameters(), lr = learning_rate )
if cfg.optimizations.replace and cfg.optimizations.linear:
model = ml.replace_linear( model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model = ml.replace_embedding( model )
engine = Engine(model=model, optimizer=optimizer)
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
print(f"NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@torch.inference_mode()
def sample( name, steps=1000 ):
if cfg.audio_backend == "dac" and name == "init":
return
engine.eval()
len_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
resps_list = engine( text_list, proms_list, len_list=len_list, sampling_temperature=0.2 )
for i, o in enumerate(resps_list):
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
unload_model()
def train():
engine.train()
t = trange(steps)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
#sample("init", 5)
train()
sample("final")
if __name__ == "__main__":
example_usage()