vall-e/vall_e/utils/ext/unsloth.py

98 lines
3.6 KiB
Python

# lifted from https://gist.github.com/pszemraj/e88ff24ab296b6d89057376b299b368a
# to-do: make this work with LoRAs, it complains
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import transformers
import inspect
class Unsloth_Offloaded_Gradient_Checkpointer(torch.autograd.Function):
"""
Saves VRAM by smartly offloading to RAM.
Tiny hit to performance, since we mask the movement via non blocking calls.
"""
@staticmethod
@torch.cuda.amp.custom_fwd
def forward(ctx, forward_function, hidden_states, *args):
saved_hidden_states = hidden_states.to("cpu", non_blocking=True)
with torch.no_grad():
output = forward_function(hidden_states, *args)
ctx.save_for_backward(saved_hidden_states)
ctx.forward_function = forward_function
ctx.args = args
return output
pass
@staticmethod
@torch.cuda.amp.custom_bwd
def backward(ctx, dY):
(hidden_states,) = ctx.saved_tensors
hidden_states = hidden_states.to("cuda", non_blocking=True).detach()
hidden_states.requires_grad = True
with torch.enable_grad():
(output,) = ctx.forward_function(hidden_states, *ctx.args)
torch.autograd.backward(output, dY)
return (
None,
hidden_states.grad,
) + (
None,
) * len(ctx.args)
pass
pass
def new_gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
#assert gradient_checkpointing_kwargs == None
gradient_checkpointing_kwargs = None
if not self.supports_gradient_checkpointing:
raise ValueError(
f"{self.__class__.__name__} does not support gradient checkpointing."
)
gradient_checkpointing_func = Unsloth_Offloaded_Gradient_Checkpointer.apply
# For old GC format (transformers < 4.35.0) for models that live on the Hub
# we will fall back to the overwritten `_set_gradient_checkpointing` method
_is_using_old_format = (
"value" in inspect.signature(self._set_gradient_checkpointing).parameters
)
if not _is_using_old_format:
self._set_gradient_checkpointing(
enable=True, gradient_checkpointing_func=gradient_checkpointing_func
)
else:
raise NotImplementedError()
if getattr(self, "_hf_peft_config_loaded", False):
# When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
# we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
# When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
# the gradients to make sure the gradient flows.
self.enable_input_require_grads()
def apply_unsloth_offloaded_gradient_checkpoint_monkey_patch():
transformers.modeling_utils.PreTrainedModel.gradient_checkpointing_enable = (
new_gradient_checkpointing_enable
)