vall-e/vall_e/ext/retnet_ts/config.py

74 lines
3.8 KiB
Python

# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
class RetNetConfig(object):
def __init__(self, **kwargs):
self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768)
self.decoder_value_embed_dim = kwargs.pop("decoder_value_embed_dim", 1280)
self.decoder_retention_heads = kwargs.pop("decoder_retention_heads", 3)
self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 1280)
self.decoder_layers = kwargs.pop("decoder_layers", 12)
self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True)
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop("moe_eval_capacity_token_fraction", 0.25)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.use_ffn_rms_norm = kwargs.pop("use_ffn_rms_norm", False)
self.use_glu = kwargs.pop("use_glu", True)
self.use_lm_decay = kwargs.pop("use_lm_decay", False)
self.z_loss_coeff = kwargs.pop("z_loss_coeff", 0.0) # TODO: 1e-4
self.multiway = kwargs.pop("multiway", False)
self.share_decoder_input_output_embed = kwargs.pop("share_decoder_input_output_embed",
False)
self.max_target_positions = kwargs.pop("max_target_positions", 1024)
self.no_output_layer = kwargs.pop("no_output_layer", True)
self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-6)
# Blockwise
self.chunkwise_recurrent = kwargs.pop("chunkwise_recurrent", False)
self.recurrent_chunk_size = kwargs.pop("recurrent_chunk_size", 512)
# Text
self.vocab_size = kwargs.pop("vocab_size", -1)
# Fairscale
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
# token id
self.pad_token_id = kwargs.pop("pad_token_id", 0)
self.postprocessing()
def postprocessing(self):
if self.deepnorm:
self.decoder_normalize_before = False
self.subln = False
if self.subln:
self.decoder_normalize_before = True
self.deepnorm = False
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)
self.postprocessing()