vall-e/vall_e/emb/qnt.py

798 lines
23 KiB
Python
Executable File

from ..config import cfg
import argparse
import random
import math
import torch
import torchaudio
import numpy as np
import logging
_logger = logging.getLogger(__name__)
from functools import cache
from pathlib import Path
from typing import Union
from einops import rearrange
from torch import Tensor
from tqdm import tqdm
try:
from encodec import EncodecModel
from encodec.utils import convert_audio
except Exception as e:
cfg.inference.use_encodec = False
try:
from vocos import Vocos
except Exception as e:
cfg.inference.use_vocos = False
try:
from dac import DACFile
from audiotools import AudioSignal
from dac.utils import load_model as __load_dac_model
"""
Patch decode to skip things related to the metadata (namely the waveform trimming)
So far it seems the raw waveform can just be returned without any post-processing
A smart implementation would just reuse the values from the input prompt
"""
from dac.model.base import CodecMixin
@torch.no_grad()
def CodecMixin_compress(
self,
audio_path_or_signal: Union[str, Path, AudioSignal],
win_duration: float = 1.0,
verbose: bool = False,
normalize_db: float = -16,
n_quantizers: int = None,
) -> DACFile:
"""Processes an audio signal from a file or AudioSignal object into
discrete codes. This function processes the signal in short windows,
using constant GPU memory.
Parameters
----------
audio_path_or_signal : Union[str, Path, AudioSignal]
audio signal to reconstruct
win_duration : float, optional
window duration in seconds, by default 5.0
verbose : bool, optional
by default False
normalize_db : float, optional
normalize db, by default -16
Returns
-------
DACFile
Object containing compressed codes and metadata
required for decompression
"""
audio_signal = audio_path_or_signal
if isinstance(audio_signal, (str, Path)):
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
self.eval()
original_padding = self.padding
original_device = audio_signal.device
audio_signal = audio_signal.clone()
original_sr = audio_signal.sample_rate
resample_fn = audio_signal.resample
loudness_fn = audio_signal.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if audio_signal.signal_duration >= 10 * 60 * 60:
resample_fn = audio_signal.ffmpeg_resample
loudness_fn = audio_signal.ffmpeg_loudness
original_length = audio_signal.signal_length
resample_fn(self.sample_rate)
input_db = loudness_fn()
if normalize_db is not None:
audio_signal.normalize(normalize_db)
audio_signal.ensure_max_of_audio()
nb, nac, nt = audio_signal.audio_data.shape
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
win_duration = (
audio_signal.signal_duration if win_duration is None else win_duration
)
if audio_signal.signal_duration <= win_duration:
# Unchunked compression (used if signal length < win duration)
self.padding = True
n_samples = nt
hop = nt
else:
# Chunked inference
self.padding = False
# Zero-pad signal on either side by the delay
audio_signal.zero_pad(self.delay, self.delay)
n_samples = int(win_duration * self.sample_rate)
# Round n_samples to nearest hop length multiple
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
hop = self.get_output_length(n_samples)
codes = []
range_fn = range if not verbose else tqdm.trange
for i in range_fn(0, nt, hop):
x = audio_signal[..., i : i + n_samples]
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
audio_data = x.audio_data.to(self.device)
audio_data = self.preprocess(audio_data, self.sample_rate)
with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp):
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
codes.append(c.to(original_device))
chunk_length = c.shape[-1]
codes = torch.cat(codes, dim=-1)
dac_file = DACFile(
codes=codes,
chunk_length=chunk_length,
original_length=original_length,
input_db=input_db,
channels=nac,
sample_rate=original_sr,
padding=self.padding,
dac_version="1.0.0",
#dac_version=SUPPORTED_VERSIONS[-1],
)
if n_quantizers is not None:
codes = codes[:, :n_quantizers, :]
self.padding = original_padding
return dac_file
@torch.no_grad()
def CodecMixin_decompress(
self,
obj: Union[str, Path, DACFile],
verbose: bool = False,
) -> AudioSignal:
self.eval()
if isinstance(obj, (str, Path)):
obj = DACFile.load(obj)
original_padding = self.padding
self.padding = obj.padding
range_fn = range if not verbose else tqdm.trange
codes = obj.codes
original_device = codes.device
chunk_length = obj.chunk_length
recons = []
for i in range_fn(0, codes.shape[-1], chunk_length):
c = codes[..., i : i + chunk_length].to(self.device)
z = self.quantizer.from_codes(c)[0]
r = self.decode(z)
recons.append(r.to(original_device))
recons = torch.cat(recons, dim=-1)
recons = AudioSignal(recons, self.sample_rate)
# to-do, original implementation
if not hasattr(obj, "dummy") or not obj.dummy:
resample_fn = recons.resample
loudness_fn = recons.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if recons.signal_duration >= 10 * 60 * 60:
resample_fn = recons.ffmpeg_resample
loudness_fn = recons.ffmpeg_loudness
recons.normalize(obj.input_db)
resample_fn(obj.sample_rate)
recons = recons[..., : obj.original_length]
loudness_fn()
recons.audio_data = recons.audio_data.reshape(
-1, obj.channels, obj.original_length
)
self.padding = original_padding
return recons
CodecMixin.compress = CodecMixin_compress
CodecMixin.decompress = CodecMixin_decompress
except Exception as e:
cfg.inference.use_dac = False
_logger.warning(str(e))
# uses https://github.com/facebookresearch/AudioDec/
# I have set up a pip-ify'd version with the caveat of having to manually handle downloading the checkpoints with a wget + unzip
# I was not happy with testing, it sounded rather mediocre.
"""
try:
from audiodec.utils.audiodec import AudioDec, assign_model as _audiodec_assign_model
except Exception as e:
cfg.inference.use_audiodec = False
_logger.warning(str(e))
"""
@cache
def _load_encodec_model(device="cuda", levels=0):
assert cfg.sample_rate == 24_000
if not levels:
levels = cfg.model.max_levels
# too lazy to un-if ladder this shit
bandwidth_id = 6.0
if levels == 2:
bandwidth_id = 1.5
elif levels == 4:
bandwidth_id = 3.0
elif levels == 8:
bandwidth_id = 6.0
# Instantiate a pretrained EnCodec model
model = EncodecModel.encodec_model_24khz()
model.set_target_bandwidth(bandwidth_id)
model = model.to(device)
model = model.eval()
# extra metadata
model.bandwidth_id = bandwidth_id
model.sample_rate = cfg.sample_rate
model.normalize = cfg.inference.normalize
model.backend = "encodec"
return model
@cache
def _load_vocos_model(device="cuda", levels=0):
assert cfg.sample_rate == 24_000
if not levels:
levels = cfg.model.max_levels
model = Vocos.from_pretrained("charactr/vocos-encodec-24khz")
model = model.to(device)
model = model.eval()
# too lazy to un-if ladder this shit
bandwidth_id = 2
if levels == 2:
bandwidth_id = 0
elif levels == 4:
bandwidth_id = 1
elif levels == 8:
bandwidth_id = 2
# extra metadata
model.bandwidth_id = torch.tensor([bandwidth_id], device=device)
model.sample_rate = cfg.sample_rate
model.backend = "vocos"
return model
@cache
def _load_dac_model(device="cuda"):
kwargs = dict(model_type="44khz",model_bitrate="8kbps",tag="latest")
# yes there's a better way, something like f'{cfg.sample.rate//1000}hz'
if cfg.sample_rate == 44_100:
kwargs["model_type"] = "44khz"
elif cfg.sample_rate == 16_000:
kwargs["model_type"] = "16khz"
else:
raise Exception(f'unsupported sample rate: {cfg.sample_rate}')
model = __load_dac_model(**kwargs)
model = model.to(device)
model = model.eval()
model.backend = "dac"
model.model_type = kwargs["model_type"]
return model
@cache
def _load_audiodec_model(device="cuda", model_name=None):
if not model_name:
model_name = "libritts_v1" if cfg.sample_rate == 24_000 else "vctk_v1"
sample_rate, encoder_checkpoint, decoder_checkpoint = _audiodec_assign_model(model_name)
model = AudioDec(tx_device=device , rx_device=device )
model.load_transmitter(encoder_checkpoint)
model.load_receiver(encoder_checkpoint, decoder_checkpoint)
model.backend = "audiodec"
model.sample_rate = sample_rate
return model
@cache
def _load_model(device="cuda", backend=None):
if not backend:
backend = cfg.audio_backend
if backend == "audiodec":
return _load_audiodec_model(device)
if backend == "dac":
return _load_dac_model(device)
if backend == "vocos":
return _load_vocos_model(device)
return _load_encodec_model(device)
def unload_model():
_load_model.cache_clear()
_load_encodec_model.cache_clear() # because vocos can only decode
@torch.inference_mode()
def decode(codes: Tensor, device="cuda", metadata=None, window_duration=None):
# upcast so it won't whine
if codes.dtype == torch.int8 or codes.dtype == torch.int16 or codes.dtype == torch.uint8:
codes = codes.to(torch.int32)
# expand if we're given a raw 1-RVQ stream
if codes.dim() == 1:
codes = rearrange(codes, "t -> 1 1 t")
# expand to a batch size of one if not passed as a batch
# vocos does not do batch decoding, but encodec does, but we don't end up using this anyways *I guess*
# to-do, make this logical
elif codes.dim() == 2:
codes = rearrange(codes, "t q -> 1 q t")
assert codes.dim() == 3, f'Requires shape (b q t) but got {codes.shape}'
# load the model
model = _load_model(device)
# AudioDec uses a different pathway
if model.backend == "audiodec":
codes = codes.to( device=device )[0]
zq = model.rx_encoder.lookup( codes )
wav = model.decoder.decode(zq).squeeze(1)
return wav, model.sample_rate
# DAC uses a different pathway
if model.backend == "dac":
dummy = False
if metadata is None:
metadata = dict(
chunk_length=codes.shape[-1],
original_length=0,
input_db=-12,
channels=1,
sample_rate=model.sample_rate,
padding=True,
dac_version='1.0.0',
)
dummy = True
elif hasattr( metadata, "__dict__" ):
metadata = metadata.__dict__
# generate object with copied metadata
artifact = DACFile(
codes = codes,
chunk_length = math.floor(window_duration * cfg.dataset.frames_per_second) if window_duration else metadata["chunk_length"],
original_length = metadata["original_length"],
input_db = metadata["input_db"],
channels = metadata["channels"],
sample_rate = metadata["sample_rate"],
padding = metadata["padding"],
dac_version = metadata["dac_version"],
)
artifact.dummy = dummy
# to-do: inject the sample rate encoded at, because we can actually decouple
return CodecMixin_decompress(model, artifact, verbose=False).audio_data[0], artifact.sample_rate
kwargs = {}
if model.backend == "vocos":
x = model.codes_to_features(codes[0])
kwargs['bandwidth_id'] = model.bandwidth_id
else:
# encodec will decode as a batch
x = [(codes.to(device), None)]
wav = model.decode(x, **kwargs)
# encodec will decode as a batch
if model.backend == "encodec":
wav = wav[0]
return wav, model.sample_rate
# huh
def decode_to_wave(resps: Tensor, device="cuda"):
return decode(resps, device=device)
def decode_to_file(resps: Tensor, path: Path, device="cuda"):
wavs, sr = decode(resps, device=device)
torchaudio.save(str(path), wavs.cpu(), sr)
return wavs, sr
def _replace_file_extension(path, suffix):
return (path.parent / path.name.split(".")[0]).with_suffix(suffix)
# an experimental way to include "trained" embeddings from the audio backend itself
# > b-but why not just initialize the embedding weights to these instead of fetching them at r-runtime
# each audio backend does their "embeddings" a different way that isn't just a embedding weights
#
# this is overkill and I don't feel like this benefits anything, but it was an idea I had
# this only really works if the embedding dims match, and either a Linear to rescale would be needed or semi-erroneously just padding with 0s
@torch.inference_mode()
def encode_as_embedding(codes: Tensor, quant_level: int = 0, sums=False, device="cuda"):
model = _load_model(device)
codes = codes.to(device=device, dtype=torch.int32)
# yucky kludge
if sums:
if codes.dim() == 1:
codes = rearrange(codes, "t -> t 1")
if cfg.audio_backend == "dac":
x = []
for i in range(quant_level+1):
emb = model.quantizer.quantizers[i]
code = rearrange(codes[:, quant_level], "t -> 1 t")
xi = emb.decode_code(code)
xi = emb.out_proj(xi)
x.append( xi[0].t() )
return sum(x).detach()
raise Exception(f'Currently only DAC is supported')
if codes.dim() == 2:
codes = codes[:, quant_level]
codes = rearrange(codes, "t -> 1 t")
# dac conveniently has its dim = 1024
if cfg.audio_backend == "dac":
emb = model.quantizer.quantizers[quant_level]
x = emb.decode_code(codes)
x = emb.out_proj(x)
x = x[0].t().detach()
return x
"""
# vocos inconveniently has its dim = 128
elif cfg.audio_backend == "vocos":
x = model.codes_to_features(codes)
# encodec inconveniently has its dim = 300
elif cfg.audio_backend == "encodec":
...
"""
raise Exception(f'Currently only DAC is supported')
@torch.inference_mode()
def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", return_metadata=True, window_duration=None):
# DAC uses a different pathway
if cfg.audio_backend == "dac":
model = _load_dac_model( device )
signal = AudioSignal(wav, sample_rate=sr)
artifact = model.compress(signal, win_duration=window_duration, verbose=False) # , n_quantizers=levels)
#artifact = model.compress(signal)
return artifact.codes if not return_metadata else artifact
# AudioDec uses a different pathway
if cfg.audio_backend == "audiodec":
model = _load_audiodec_model(device)
# reshape (channel, samples) => (batch, channel, samples)
if wav.dim() < 3:
wav = wav.unsqueeze(0)
# skip unnecessary resample
if sr != model.sample_rate or wav.shape[1] != 1:
wav = convert_audio(wav, sr, model.sample_rate, 1)
wav = wav.to(device)
# wav = rearrange(wav, "t c -> t 1 c").to(device)
encoded = model.tx_encoder.encode(wav)
quantized = model.tx_encoder.quantize(encoded)
return quantized
# vocos does not encode wavs to encodecs, so just use normal encodec
model = _load_encodec_model(device)
# reshape (channel, samples) => (batch, channel, samples)
if wav.dim() < 3:
wav = wav.unsqueeze(0)
# skip unnecessary resample
if sr != model.sample_rate or wav.shape[1] != model.channels:
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
wav = wav.to(device)
with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp):
encoded_frames = model.encode(wav)
qnt = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # (b q t)
return qnt
def encode_from_files(paths, device="cuda"):
tuples = [ torchaudio.load(str(path)) for path in paths ]
wavs = []
main_sr = tuples[0][1]
for wav, sr in tuples:
assert sr == main_sr, "Mismatching sample rates"
if wav.shape[0] == 2:
wav = wav[:1]
wavs.append(wav)
wav = torch.cat(wavs, dim=-1)
return encode(wav, sr, device)
def encode_from_file(path, device="cuda"):
if isinstance( path, list ):
return encode_from_files( path, device )
else:
path = str(path)
wav, sr = torchaudio.load(path)
if wav.shape[0] == 2:
wav = wav[:1]
qnt = encode(wav, sr, device)
return qnt
"""
Helper Functions
"""
# DAC "silence": [ 568, 804, 10, 674, 364, 981, 568, 378, 731]
# trims from the start, up to `target`
def trim( qnt, target, reencode=False, device="cuda" ):
length = max( qnt.shape[0], qnt.shape[1] )
if target > 0:
start = 0
end = start + target
if end >= length:
start = length - target
end = length
# negative length specified, trim from end
else:
start = length + target
end = length
if start < 0:
start = 0
if not reencode:
return qnt[start:end] if qnt.shape[0] > qnt.shape[1] else qnt[:, start:end]
# trims on the waveform itself
# need to test
start = start / cfg.dataset.frames_per_second * cfg.sample_rate
end = end / cfg.dataset.frames_per_second * cfg.sample_rate
wav = decode(qnt, device=device)[0]
return encode(wav[start:end], cfg.sample_rate, device=device)[0].t()
# trims a random piece of audio, up to `target`
# to-do: try and align to EnCodec window
def trim_random( qnt, target ):
length = max( qnt.shape[0], qnt.shape[1] )
start = int(length * random.random())
end = start + target
if end >= length:
start = length - target
end = length
return qnt[start:end] if qnt.shape[0] > qnt.shape[1] else qnt[:, start:end]
# repeats the audio to fit the target size
def repeat_extend_audio( qnt, target ):
pieces = []
length = 0
while length < target:
pieces.append(qnt)
length += qnt.shape[0]
return trim(torch.cat(pieces), target)
# interleaves between a list of audios
# useful for interleaving silence
def interleave_audio( *args, audio=None ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
if audio is None:
return qnts
# interleave silence
# yes there's a better way
res = []
for i, qnt in enumerate(qnts):
res.append( qnt )
if i + 1 != len(qnts):
res.append( audio )
return res
# concats two audios together
def concat_audio( *args, reencode=False, device="cuda" ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
# just naively combine the codes
if not reencode:
return torch.concat( qnts )
decoded = [ decode(qnt, device=device)[0] for qnt in qnts ]
combined = torch.concat( decoded )
return encode(combined, cfg.sample_rate, device=device)[0].t()
# merges two quantized audios together
# requires re-encoding because there's no good way to combine the waveforms of two audios without relying on some embedding magic
def merge_audio( *args, device="cuda", scale=[] ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
decoded = [ decode(qnt, device=device)[0] for qnt in qnts ]
# max length
max_length = max([ wav.shape[-1] for wav in decoded ])
for i, wav in enumerate(decoded):
delta = max_length - wav.shape[-1]
if delta <= 0:
continue
pad = torch.zeros( (1, delta), dtype=wav.dtype, device=wav.device )
decoded[i] = torch.cat( [ wav, pad ], dim=-1 )
# useful to adjust the volumes of each waveform
if len(scale) == len(decoded):
for i in range(len(scale)):
decoded[i] = decoded[i] * scale[i]
combined = sum(decoded) / len(decoded)
return encode(combined, cfg.sample_rate, device=device)[0].t()
# Get framerate for a given audio backend
def get_framerate( backend=None, sample_rate=None ):
if not backend:
backend = cfg.audio_backend
if not sample_rate:
sample_rate = cfg.sample_rate
if backend == "dac":
if sample_rate == 44_100:
return 87
if sample_rate == 16_000:
return 50
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
return 75
# Generates quantized silence
def get_silence( length, device=None, codes=None ):
length = math.floor(length * get_framerate())
if cfg.audio_backend == "dac":
codes = [ 568, 804, 10, 674, 364, 981, 568, 378, 731 ]
else:
codes = [ 62, 424, 786, 673, 622, 986, 570, 948 ]
return torch.tensor([ codes for _ in range( length ) ], device=device, dtype=torch.int16)
# Pads a sequence of codes with silence
def pad_codes_with_silence( codes, size=1 ):
duration = codes.shape[0] * get_framerate()
difference = math.ceil( duration + size ) - duration
silence = get_silence( difference, device=codes.device )[:, :codes.shape[-1]]
half = math.floor(difference / 2 * get_framerate())
return torch.concat( [ silence[half:, :], codes, silence[:half, :] ], dim=0 )
# Generates an empty waveform
def get_silent_waveform( length, device=None ):
length = math.floor(length * cfg.sample_rate)
return torch.tensor( [ [ 0 for _ in range( length ) ] ], device=device, dtype=torch.float32 )
# Pads a waveform with silence
def pad_waveform_with_silence( waveform, sample_rate, size=1 ):
duration = waveform.shape[-1] / sample_rate
difference = math.ceil( duration + size ) - duration
silence = get_silent_waveform( difference, device=waveform.device )
half = math.floor(difference / 2 * sample_rate)
return torch.concat( [ silence[:, half:], waveform, silence[:, :half] ], dim=-1 )
# Encodes/decodes audio, and helps me debug things
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--audio-backend", type=str, default="encodec")
parser.add_argument("--input", type=Path)
parser.add_argument("--output", type=Path, default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--dtype", type=str, default="float16")
parser.add_argument("--window-duration", type=float, default=None) # for DAC, the window duration for encoding / decoding
parser.add_argument("--print", action="store_true") # prints codes and metadata
parser.add_argument("--pad", action="store_true") # to test if padding with silence modifies the waveform / quants too much
args = parser.parse_args()
# prepare from args
cfg.set_audio_backend(args.audio_backend)
audio_extension = cfg.audio_backend_extension
cfg.inference.weight_dtype = args.dtype # "bfloat16"
cfg.inference.amp = args.dtype != "float32"
cfg.device = args.device
# decode
if args.input.suffix == audio_extension:
args.output = args.input.with_suffix('.wav') if not args.output else args.output.with_suffix('.wav')
artifact = np.load(args.input, allow_pickle=True)[()]
codes = torch.from_numpy(artifact['codes'])[0][:, :].t().to(device=cfg.device, dtype=torch.int16)
# pad to nearest
if args.pad:
codes = pad_codes_with_silence( codes )
del artifact['metadata']
waveform, sample_rate = decode( codes, device=cfg.device, metadata=artifact['metadata'] if 'metadata' in artifact else None, window_duration=args.window_duration )
torchaudio.save(args.output, waveform.cpu(), sample_rate)
# print
if args.print:
torch.set_printoptions(profile="full")
_logger.info(f"Metadata: {artifact['metadata']}" )
_logger.info(f"Codes: {codes.shape}, {codes}" )
# encode
else:
args.output = args.input.with_suffix(audio_extension) if not args.output else args.output.with_suffix(audio_extension)
waveform, sample_rate = torchaudio.load(args.input)
# pad to nearest
if args.pad:
waveform = pad_waveform_with_silence( waveform, sample_rate )
qnt = encode(waveform.to(cfg.device), sr=sample_rate, device=cfg.device, window_duration=args.window_duration)
if cfg.audio_backend == "dac":
state_dict = {
"codes": qnt.codes.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": qnt.original_length,
"sample_rate": qnt.sample_rate,
"input_db": qnt.input_db.cpu().numpy().astype(np.float32),
"chunk_length": qnt.chunk_length,
"channels": qnt.channels,
"padding": qnt.padding,
"dac_version": "1.0.0",
},
}
else:
state_dict = {
"codes": qnt.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": waveform.shape[-1],
"sample_rate": sample_rate,
},
}
np.save(open(args.output, "wb"), state_dict)