196 lines
5.8 KiB
Python
196 lines
5.8 KiB
Python
# https://github.com/syncdoth/RetNet/
|
|
from ....ext.retnet_hf.configuration_retnet import RetNetConfig
|
|
from ....ext.retnet_hf.modeling_retnet import RetNetModel as RetNetDecoder, RetNetForCausalLM
|
|
|
|
# things we're overriding or required to override
|
|
from ....ext.retnet_hf.modeling_retnet import RetNetDecoderLayer, MultiScaleRetention, theta_shift, split_heads, RMSNorm, FeedForwardNetwork, get_activation_fn, LayerNorm, RetNetRelPos
|
|
|
|
import torch
|
|
import math
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
# required to have compatibile LayerNorm
|
|
def FeedForwardNetwork_init(
|
|
self,
|
|
embed_dim,
|
|
ffn_dim,
|
|
activation_fn,
|
|
dropout,
|
|
activation_dropout,
|
|
layernorm_eps,
|
|
subln=True,
|
|
use_rms_norm=False,
|
|
):
|
|
super(FeedForwardNetwork, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
self.activation_fn = get_activation_fn(activation=str(activation_fn))
|
|
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
|
|
self.dropout_module = torch.nn.Dropout(dropout)
|
|
self.fc1 = torch.nn.Linear(self.embed_dim, ffn_dim)
|
|
self.fc2 = torch.nn.Linear(ffn_dim, self.embed_dim)
|
|
self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None
|
|
|
|
FeedForwardNetwork.__init__ = FeedForwardNetwork_init
|
|
|
|
def RetNetModel_init(
|
|
self,
|
|
config: RetNetConfig,
|
|
embed_tokens: torch.nn.Embedding = None,
|
|
tensor_parallel: bool = False,
|
|
):
|
|
super(RetNetDecoder, self).__init__(config)
|
|
self.config = config
|
|
|
|
self.dropout_module = torch.nn.Dropout(config.dropout)
|
|
|
|
self.embed_dim = config.decoder_embed_dim
|
|
self.embed_scale = (
|
|
1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
|
|
)
|
|
|
|
if embed_tokens is None and config.vocab_size:
|
|
embed_tokens = torch.nn.Embedding(
|
|
config.vocab_size, config.decoder_embed_dim, config.pad_token_id
|
|
)
|
|
self.embed_tokens = embed_tokens
|
|
|
|
if config.layernorm_embedding:
|
|
self.layernorm_embedding = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
|
|
else:
|
|
self.layernorm_embedding = None
|
|
|
|
self.layers = torch.nn.ModuleList([])
|
|
|
|
for i in range(config.decoder_layers):
|
|
self.layers.append(
|
|
RetNetDecoderLayer(config, depth=i, tensor_parallel=tensor_parallel)
|
|
)
|
|
|
|
self.decoder_layers = len(self.layers)
|
|
|
|
if config.decoder_normalize_before:
|
|
self.layer_norm = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
|
|
else:
|
|
self.layer_norm = None
|
|
|
|
self.retnet_rel_pos = RetNetRelPos(config)
|
|
self.recurrent_chunk_size = config.recurrent_chunk_size
|
|
|
|
if config.deepnorm:
|
|
init_scale = math.pow(8.0 * config.decoder_layers, 0.25)
|
|
for name, p in self.named_parameters():
|
|
if (
|
|
"fc1" in name
|
|
or "fc2" in name
|
|
or "out_proj" in name
|
|
or "v_proj" in name
|
|
):
|
|
p.data.div_(init_scale)
|
|
|
|
if config.subln and not config.use_glu:
|
|
init_scale = math.sqrt(math.log(config.decoder_layers * 2))
|
|
for name, p in self.named_parameters():
|
|
if (
|
|
"fc1" in name
|
|
or "fc2" in name
|
|
or "out_proj" in name
|
|
or "v_proj" in name
|
|
):
|
|
p.data.mul_(init_scale)
|
|
|
|
self.gradient_checkpointing = True
|
|
self.post_init()
|
|
|
|
RetNetDecoder.__init__ = RetNetModel_init
|
|
|
|
# restores bias in our FFNs
|
|
def RetNetDecoderLayer_init(self, config: RetNetConfig, depth: int, tensor_parallel: bool = False):
|
|
super(RetNetDecoderLayer, self).__init__()
|
|
self.config = config
|
|
self.embed_dim = config.decoder_embed_dim
|
|
self.dropout_module = torch.nn.Dropout(config.dropout)
|
|
|
|
if config.drop_path_rate > 0:
|
|
drop_path_prob = np.linspace(
|
|
0, config.drop_path_rate, config.decoder_layers
|
|
)[depth]
|
|
self.drop_path = DropPath(drop_path_prob)
|
|
else:
|
|
self.drop_path = None
|
|
|
|
self.retention = MultiScaleRetention(
|
|
config, use_bias=True, tensor_parallel=tensor_parallel
|
|
)
|
|
|
|
self.normalize_before = config.decoder_normalize_before
|
|
|
|
self.retention_layer_norm = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
|
|
|
|
self.ffn_dim = config.decoder_ffn_embed_dim
|
|
|
|
self.ffn = self.build_ffn()
|
|
|
|
self.final_layer_norm = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
|
|
|
|
if config.deepnorm:
|
|
self.alpha = math.pow(2.0 * config.decoder_layers, 0.25)
|
|
else:
|
|
self.alpha = 1.0
|
|
|
|
RetNetDecoderLayer.__init__ = RetNetDecoderLayer_init
|
|
# fixes backwards when using te's autocast
|
|
def MultiScaleRetention_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
rel_pos: Tuple[Tuple[torch.Tensor]],
|
|
retention_mask: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
forward_impl: str = "parallel",
|
|
output_retentions: Optional[bool] = False,
|
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
|
|
B, T, H = hidden_states.size()
|
|
(sin, cos), decay_mask = rel_pos
|
|
# projections
|
|
q = self.q_proj(hidden_states)
|
|
k = self.k_proj(hidden_states) * self.scaling # for scaled dot product
|
|
v = self.v_proj(hidden_states)
|
|
g = self.g_proj(hidden_states)
|
|
# multi-head
|
|
q, k, v = split_heads((q, k, v), B, T, self.num_heads)
|
|
|
|
# rotate
|
|
# NOTE: theta_shift has bug with mps device.
|
|
qr = theta_shift(q, sin, cos)
|
|
kr = theta_shift(k, sin, cos)
|
|
|
|
# retention
|
|
if forward_impl == "parallel":
|
|
retention_out, curr_kv, retention_weights = self.parallel_retention(
|
|
qr, kr, v, decay_mask
|
|
)
|
|
elif forward_impl == "recurrent":
|
|
retention_out, curr_kv = self.recurrent_retention(
|
|
qr,
|
|
kr,
|
|
v,
|
|
decay_mask,
|
|
past_key_value=past_key_value,
|
|
retention_mask=retention_mask,
|
|
)
|
|
elif forward_impl == "chunkwise":
|
|
retention_out, curr_kv = self.chunkwise_retention(qr, kr, v, decay_mask)
|
|
else:
|
|
raise ValueError(f"forward_impl {forward_impl} not supported.")
|
|
|
|
# concaat heads
|
|
normed = self.group_norm(retention_out).reshape(B, T, self.value_dim)
|
|
# out gate & proj
|
|
out = self.gate_fn(g) * normed
|
|
out = self.out_proj(out)
|
|
|
|
outputs = (out, curr_kv)
|
|
if output_retentions:
|
|
outputs += (retention_weights,) if forward_impl == "parallel" else (None,)
|
|
return outputs
|
|
|
|
MultiScaleRetention.forward = MultiScaleRetention_forward |