vall-e/scripts/process_old_dataaset.py

138 lines
4.0 KiB
Python

import os
import json
import torch
import torchaudio
from tqdm.auto import tqdm
from pathlib import Path
from vall_e.emb.g2p import encode as valle_phonemize
from vall_e.emb.qnt import encode as valle_quantize, _replace_file_extension
input_audio = "voices"
input_metadata = "metadata"
output_dataset = "training"
device = "cuda"
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
for dataset_name in os.listdir(f'./{input_audio}/'):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
print("Is not dir:", f'./{input_audio}/{dataset_name}/')
continue
for speaker_id in tqdm(os.listdir(f'./{input_audio}/{dataset_name}/'), desc="Processing speaker"):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/{speaker_id}'):
print("Is not dir:", f'./{input_audio}/{dataset_name}/{speaker_id}')
continue
os.makedirs(f'./{output_dataset}/{dataset_name}/{speaker_id}/', exist_ok=True)
metadata_path = Path(f'./{input_metadata}/{dataset_name}/{speaker_id}/whisper.json')
if not metadata_path.exists():
print("Does not exist:", metadata_path)
continue
try:
metadata = json.loads(open(metadata_path, "r", encoding="utf-8").read())
except Exception as e:
print("Failed to load metadata:", metadata_path, e)
continue
txts = []
wavs = []
for filename in metadata.keys():
inpath = Path(f'./{input_audio}/{dataset_name}/{speaker_id}/{filename}')
if not inpath.exists():
print("Does not exist:", inpath)
continue
extension = os.path.splitext(filename)[-1][1:]
fname = filename.replace(f'.{extension}', "")
waveform, sample_rate = None, None
language = metadata[filename]["language"] if "language" in metadata[filename] else "english"
if len(metadata[filename]["segments"]) == 0:
id = pad(0, 4)
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/{fname}_{id}.{extension}')
text = metadata[filename]["text"]
if len(text) == 0:
continue
if _replace_file_extension(outpath, ".json").exists() and _replace_file_extension(outpath, ".dac").exists():
continue
if not _replace_file_extension(outpath, ".json").exists():
txts.append((
outpath,
text,
language,
))
if not _replace_file_extension(outpath, ".dac").exists():
if waveform is None:
waveform, sample_rate = torchaudio.load(inpath)
wavs.append((
outpath,
waveform,
sample_rate
))
else:
for segment in metadata[filename]["segments"]:
id = pad(segment['id'], 4)
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/{fname}_{id}.{extension}')
if _replace_file_extension(outpath, ".json").exists() and _replace_file_extension(outpath, ".dac").exists():
continue
if not _replace_file_extension(outpath, ".json").exists():
txts.append((
outpath,
segment["text"],
language,
))
if not _replace_file_extension(outpath, ".dac").exists():
if waveform is None:
waveform, sample_rate = torchaudio.load(inpath)
start = int(segment['start'] * sample_rate)
end = int(segment['end'] * sample_rate)
if start < 0:
start = 0
if end >= waveform.shape[-1]:
end = waveform.shape[-1] - 1
if end - start < 0:
continue
wavs.append((
outpath,
waveform[:, start:end],
sample_rate
))
for job in tqdm(txts, desc=f"Phonemizing: {speaker_id}"):
outpath, text, language = job
phones = valle_phonemize(text)
data = {
"text": text.strip(),
"phonemes": phones,
"language": language,
}
open(_replace_file_extension(outpath, ".json"), 'w', encoding='utf-8').write(json.dumps(data))
for job in tqdm(wavs, desc=f"Quantizing: {speaker_id}"):
try:
outpath, waveform, sample_rate = job
qnt = valle_quantize(waveform, sr=sample_rate, device=device)
qnt.save(_replace_file_extension(outpath, ".dac"))
except Exception as e:
print(f"Failed to quantize: {outpath}:", e)
continue