vall-e/data/config.yaml
2024-06-03 21:28:49 -05:00

140 lines
2.4 KiB
YAML

experimental: False # should probably expand this into a dict of experimental flags
sample_rate: 24_000 # 44_000 for dac
audio_backend: "vocos" # or dac
models:
- name: "ar+nar"
size: "full"
resp_levels: 8
prom_levels: 8
tasks: 8
langs: 2
tones: 1
arch_type: llama
training: True
version: 5
attention: flash_attention_2
dropout: 0.1
experimental: False
loss_factors:
text: 0.1
prom: 0.0
resp: 1.0
hyperparameters:
autotune: False
autotune_params:
start_profile_step: 1
end_profile_step: 50
num_tuning_micro_batch_sizes: 8
batch_size: 16
gradient_accumulation_steps: 4
gradient_clipping: 1.0
warmup_steps: 100
optimizer: Prodigy
learning_rate: 1.0
torch_optimizer: True
scheduler: "" # ScheduleFree
torch_scheduler: True
evaluation:
batch_size: 8
frequency: 5000
size: 8
steps: 500
ar_temperature: 0.95
nar_temperature: 0.25
load_disabled_engines: True
trainer:
#no_logger: True
ddp: False
#check_for_oom: False
iterations: 1_000_000
save_tag: step
save_on_oom: True
save_on_quit: True
save_frequency: 250
export_on_save: True
keep_last_checkpoints: 4
gradient_checkpointing: True
strict_loading: False
#load_state_dict: True
#load_tag: "9500"
#load_states: False
#restart_step_count: True
gc_mode: None # "global_step"
weight_dtype: float32 # float16 or bfloat16
amp: False
backend: deepspeed
deepspeed:
inferencing: True
zero_optimization_level: 0
use_compression_training: False
amp: False
load_webui: False
inference:
backend: deepspeed
normalize: False
weight_dtype: float32 # float16 or bfloat16
amp: False
optimizations:
injects: False
replace: True
linear: False
embedding: False
optimizers: True
bitsandbytes: False
dadaptation: False
bitnet: False
fp8: False
dataset:
speaker_name_getter: "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'"
speaker_group_getter: "lambda p: f'{p.parts[-3]}'"
speaker_languages:
ja: []
use_hdf5: True
use_metadata: True
hdf5_flag: r
validate: True
workers: 2
cache: True
duration_range: [3.0, 5.0]
random_utterance: 1.0
max_prompts: 1
prompt_duration: 3.0
max_resps: 1
p_resp_append: 0.25
sample_type: path # speaker
tasks_list: [ "tts" ] # , [ "tts", "tts-c", "ns", "sr", "tse", "cse", "nse", "tts"]
training: []
validation: []
noise: []