vall-e/vall_e/config.py
2024-05-09 21:25:40 -05:00

725 lines
23 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import copy
import diskcache
import h5py
import json
import os
import subprocess
import sys
import time
import torch
from dataclasses import asdict, dataclass, field
from functools import cached_property
from pathlib import Path
from omegaconf import OmegaConf
from .utils.distributed import world_size
# Yuck
from transformers import PreTrainedTokenizerFast
@dataclass()
class _Config:
cfg_path: str | None = None
@property
def relpath(self):
return Path(self.cfg_path)
@property
def cache_dir(self):
return self.relpath / ".cache"
@property
def data_dir(self):
return self.relpath / "data"
@property
def metadata_dir(self):
return self.relpath / "metadata"
@property
def ckpt_dir(self):
return self.relpath / "ckpt"
@property
def log_dir(self):
return self.relpath / "logs" / str(self.start_time)
@cached_property
def start_time(self):
return int(time.time())
@cached_property
def git_commit(self):
try:
cmd = "git rev-parse HEAD"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
@cached_property
def git_status(self):
try:
cmd = "git status"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
def dumps(self):
data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")}
data = {k: v for k, v in data.items() if not callable(v)}
return json.dumps(data, indent=2, default=str)
def dump(self, path=None):
if path is None:
path = self.log_dir / "cfg.json"
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w") as f:
f.write(self.dumps())
@staticmethod
def _is_cfg_argv(s):
return "=" in s and "--" not in s
@classmethod
def from_yaml( cls, yaml_path ):
return cls.from_cli( [f'yaml="{yaml_path}"'] )
@classmethod
def from_cli(cls, args=sys.argv):
cli_cfg = OmegaConf.from_cli([s for s in args if cls._is_cfg_argv(s)])
# Replace argv to ensure there are no omegaconf options, for compatibility with argparse.
sys.argv = [s for s in sys.argv if not cls._is_cfg_argv(s)]
if cli_cfg.get("help"):
print(f"Configurable hyperparameters with their default values:")
print(json.dumps(asdict(cls()), indent=2, default=str))
exit()
if "yaml" in cli_cfg:
yaml_cfg = OmegaConf.load(cli_cfg.yaml)
yaml_path = Path(cli_cfg.yaml).absolute()
cfg_path = Path(*yaml_path.relative_to(Path.cwd()).parts[:-1])
cfg_path = cfg_path.with_suffix("")
cfg_path = f'./{cfg_path}'
yaml_cfg.setdefault("cfg_path", cfg_path)
cli_cfg.pop("yaml")
else:
yaml_cfg = {}
merged = OmegaConf.merge(yaml_cfg, cli_cfg)
return cls(**dict(merged))
def __repr__(self):
return str(self)
def __str__(self):
return self.dumps()
@dataclass()
class Dataset:
training: list[Path] = field(default_factory=lambda: [])
validation: list[Path] = field(default_factory=lambda: [])
noise: list[Path] = field(default_factory=lambda: [])
temp: list[Path] = field(default_factory=lambda: [])
speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'"
speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'"
speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups
hdf5_name: str = "data.h5"
use_hdf5: bool = False
use_metadata: bool = False
hdf5_flag: str = "a"
validate: bool = True
workers: int = 8
cache: bool = True
phones_range: list[int] = field(default_factory=lambda: [4, 256])
duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0])
min_utterances: int = 2
random_utterance: float = 1.0
max_prompts: int = 3
prompt_duration: float = 3.0
max_resps: int = 1
p_resp_append: float = 1.0
sample_type: str = "path" # path | speaker
tasks_list: list[str] = field(default_factory=lambda: ["tts"])
_frames_per_second: int = 0 # allows setting your own hint
@cached_property
def frames_per_second(self):
if self._frames_per_second > 0:
return self._frames_per_second
if cfg.inference.audio_backend == "dac":
# using the 44KHz model with 24KHz sources has a frame rate of 41Hz
if cfg.variable_sample_rate and cfg.sample_rate == 24_000:
return 41
if cfg.sample_rate == 44_000:
return 86
if cfg.sample_rate == 16_000:
return 50
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
return 75
@property
def min_phones(self):
return self.phones_range[0]
@property
def max_phones(self):
return self.phones_range[1]
@property
def min_duration(self):
return self.duration_range[0]
@property
def max_duration(self):
return self.duration_range[1]
@dataclass()
class Model:
_max_levels: int = 0
_embeddings: str | None = None
name: str = "" # vanity name for the model
version: int = 1 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding
size: str | dict = "full" # preset string or explicitly defined dimensionality
resp_levels: int = 1 # RVQ-bin levels this model targets for outputs
prom_levels: int = 8 # RVQ-bin levels this model accepts as an input prompt
tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc")
langs: int = 1 # defined languages
tones: int = 1 # defined tones
experts: int = 1
arch_type: str = "retnet" # or "transformer""
training: bool = True # unneeded now
interleave: bool = False # use an interleaved AR rather than a split AR + NAR (experimental, worse performance and results)
p_ar_level: float | str = "auto" # determines odds of selecting the AR (level 0) when training, "auto" for default behavior
frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training
attention: str = "eager" # or flash_attention_2
audio_embedding_sums: bool = True
def get(self, name=None):
return [ self ] if not name or self.name == name else []
@property
def max_levels(self):
return self._max_levels if self._max_levels > 0 else self.prom_levels
@property
# required for fp8 as the lengths needs to be divisible by 8
def input_alignment(self):
return 8 if cfg.optimizations.fp8 else 0
@property
def full_name(self):
name = [ self.name ]
if isinstance(self.size, dict):
if hasattr(self.size, "label") and self.size['label']:
name.append(f"{self.size['label']}")
elif isinstance(self.size, str) and self.size != "full":
name.append(self.size)
if self.arch_type != "transformer":
if self.experts > 1:
name.append(f'{self.experts}x'+self.arch_type.replace("/", "-"))
else:
name.append(self.arch_type.replace("/", "-"))
if cfg.optimizations.bitnet:
name.append("bitnet")
if self.interleave:
name.append("interleaved")
else:
name.append(f'{cfg.model.prom_levels}')
return "-".join(name)
@property
def tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "tokens"):
return self.size['tokens']
return 1024
@property
def dim(self):
if isinstance(self.size, dict) and hasattr(self.size, "dim"):
return self.size['dim']
if isinstance(self.size, float):
return math.floor(1024 * self.size)
if self.size == "quarter":
return 256
if self.size == "half":
return 512
return 1024
@property
def heads(self):
if isinstance(self.size, dict) and hasattr(self.size, "heads"):
return self.size['heads']
if isinstance(self.size, float):
return math.floor(16 * self.size)
if self.size == "quarter":
return 4
if self.size == "half":
return 8
return 16
@property
def layers(self):
if isinstance(self.size, dict) and hasattr(self.size, "layers"):
return self.size['layers']
if self.size == "double":
return 24
return 12
@property
def activation_checkpointing(self):
return cfg.trainer.activation_checkpointing
@dataclass()
class Hyperparameters:
batch_size: int = 8
gradient_accumulation_steps: int = 32
gradient_clipping: int | float = 100
optimizer: str = "Adamw"
optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
learning_rate: float = 3.25e-4
warmup_steps: int = 0
scheduler: str = ""
scheduler_type: str = "" # deprecated
scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
autotune: bool = False
autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
torch_optimizer: bool = False
torch_scheduler: bool = False
@dataclass()
class Evaluation:
batch_size: int = 64
frequency: int = 250
size: int = 64
steps: int = 500
ar_temperature: float = 1.0
nar_temperature: float = 0.2
load_disabled_engines: bool = True
@dataclass()
class DeepSpeed:
zero_optimization_level: int = 0
use_compression_training: bool = False
compression_bits: int = 8
inferencing: bool = False
@cached_property
def ds_cfg(self):
optimizer_params = cfg.hyperparameters.optimizer_params
if 'lr' not in optimizer_params:
optimizer_params["lr"] = cfg.hyperparameters.learning_rate,
scheduler_params = cfg.hyperparameters.scheduler_params
if 'warmup_num_steps' not in scheduler_params:
scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps
if 'total_num_steps' not in scheduler_params:
scheduler_params['total_num_steps'] = cfg.trainer.iterations
# documentation says neither can work
if cfg.trainer.weight_dtype.lower() == "float16":
cfg.trainer.amp = False
autotune_params = cfg.hyperparameters.autotune_params
if "enabled" not in autotune_params:
autotune_params['enabled'] = True
if "results_dir" not in autotune_params:
autotune_params['results_dir'] = str( cfg.relpath / "autotune" / "results" )
if "exps_dir" not in autotune_params:
autotune_params['exps_dir'] = str( cfg.relpath / "autotune" / "exps_" )
ds_cfg = {
"train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size,
"gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps,
"optimizer": {
"type": cfg.hyperparameters.optimizer,
"params": optimizer_params,
} if not cfg.hyperparameters.torch_optimizer else None,
"scheduler": {
"type": cfg.hyperparameters.scheduler,
"params": scheduler_params,
} if not cfg.hyperparameters.torch_scheduler else None,
"gradient_clipping": cfg.hyperparameters.gradient_clipping,
"fp16": {
"enabled": cfg.trainer.weight_dtype.lower() == "float16",
"auto_cast": False, # ???
},
"bf16": {
"enabled": cfg.trainer.weight_dtype.lower() == "bfloat16",
},
"amp": {
"enabled": cfg.trainer.amp,
},
"autotuning": autotune_params if cfg.hyperparameters.autotune else None,
"compression_training": {
"weight_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"wq1": {
"params": {
"start_bits": self.compression_bits,
"target_bits": self.compression_bits,
"quantization_period": 0
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
"activation_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"aq1": {
"params": {
"bits": self.compression_bits,
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
} if self.use_compression_training else None,
"zero_optimization": {
"stage": self.zero_optimization_level,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"sub_group_size": 5e8,
"round_robin_gradients": True,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
},
"zero_quantized_weights": self.use_compression_training,
"zero_hpz_partition_size": world_size(),
"zero_quantized_gradients": self.use_compression_training,
} if self.zero_optimization_level > 0 else None,
"comms_logger": {
"enabled": False
}
}
# disable local AMP
cfg.trainer.amp = False
null_keys = [ k for k in ds_cfg if not ds_cfg[k] ]
for k in null_keys:
del ds_cfg[k]
if os.path.exists("./data/ds_config.json"):
ds_cfg.update(json.load(open("./data/ds_config.json", "r", encoding="utf-8")))
return ds_cfg
@dataclass()
class Trainer:
iterations: int = 100_000
save_tag: str = "step"
load_tag: str | None = None
save_on_oom: bool = True
save_on_quit: bool = True
export_on_save: bool = False
export_on_quit: bool = False
save_frequency: int = 100
keep_last_checkpoints: int = 0
load_state_dict: bool = False
load_states: bool = True
strict_loading: bool = True
load_module_only: bool = False
restart_step_count: bool = False
activation_checkpointing: bool = True
aggressive_optimizations: bool = False
check_for_oom: bool = True
gc_mode: str | None = None
load_disabled_engines: bool = False
weight_dtype: str = "float16"
amp: bool = False
ddp: bool = False
load_webui: bool = False
no_logger: bool = False
backend: str = "local"
deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed)
@cached_property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
@dataclass()
class Inference:
backend: str = "local"
weight_dtype: str = "float32"
amp: bool = False
normalize: bool = False # do NOT enable this unless you know exactly what you're doing
audio_backend: str = "dac"
# legacy / backwards compat
use_vocos: bool = True
use_encodec: bool = True
use_dac: bool = True
# shit that doesn't work
recurrent_chunk_size: int = 0
recurrent_forward: bool = False
@cached_property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "int8":
return torch.int8
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
# should be renamed to optimizations
@dataclass()
class Optimizations:
injects: bool = False # overwrites default torch classes (not recommended)
replace: bool = False # replaces modules in place with the optimized version (recommended)
linear: bool = True # inject/replace linear for BnB
embedding: bool = True # inject/replace embedding for BnB
optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation)
bitsandbytes: bool = False # use bitsandbytes
dadaptation: bool = True # use dadaptation optimizer
bitnet: bool = False # use bitnet
fp8: bool = False # use fp8
@dataclass()
class Config(_Config):
device: str = "cuda"
mode: str = "training" # "inferencing"
experimental: bool = False # So I can stop commenting out things when committing
dataset: Dataset = field(default_factory=lambda: Dataset)
model: Model = field(default_factory=lambda: Model)
models: dict | list | None = None # deprecated
hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters)
evaluation: Evaluation = field(default_factory=lambda: Evaluation)
trainer: Trainer = field(default_factory=lambda: Trainer)
inference: Inference = field(default_factory=lambda: Inference)
bitsandbytes: dict | list | None = None # deprecated
optimizations: Optimizations = field(default_factory=lambda: Optimizations)
tokenizer: str = "./tokenizer.json"
sample_rate: int = 24_000
variable_sample_rate: bool = False # NOT recommended, as running directly 24Khz audio in the 44Khz DAC model will have detrimental quality loss
@property
def distributed(self):
return world_size() > 1
@cached_property
def get_spkr(self):
return eval(self.dataset.speaker_name_getter)
@cached_property
def get_spkr_group(self):
return eval(self.dataset.speaker_group_getter)
@cached_property
def diskcache(self):
if self.cfg_path is not None and self.dataset.cache:
return diskcache.Cache(self.cache_dir).memoize
return lambda: lambda x: x
def load_yaml( self, config_path ):
tmp = Config.from_yaml( config_path )
self.__dict__.update(tmp.__dict__)
def load_hdf5( self, write=False ):
if hasattr(self, 'hdf5'):
self.hdf5.close()
if self.distributed:
self.dataset.hdf5_flag = "r"
try:
self.hdf5 = h5py.File(f'{self.cfg_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset
except Exception as e:
print("Error while opening HDF5 file:", f'{self.cfg_path}/{self.dataset.hdf5_name}', str(e))
self.dataset.use_hdf5 = False
def format( self ):
self.dataset = Dataset(**self.dataset)
self.dataset.training = [ Path(dir) for dir in self.dataset.training ]
self.dataset.validation = [ Path(dir) for dir in self.dataset.validation ]
self.dataset.noise = [ Path(dir) for dir in self.dataset.noise ]
if self.models is not None:
self.model = Model(**next(iter(self.models)))
else:
self.model = Model(**self.model)
self.hyperparameters = Hyperparameters(**self.hyperparameters)
self.evaluation = Evaluation(**self.evaluation)
self.trainer = Trainer(**self.trainer)
if not isinstance(self.trainer.deepspeed, type):
self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed)
self.inference = Inference(**self.inference)
if self.bitsandbytes is not None:
self.optimizations = Optimizations(**self.bitsandbytes)
else:
self.optimizations = Optimizations(**self.optimizations)
if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler:
self.hyperparameters.scheduler = self.hyperparameters.scheduler_type
self.hyperparameters.scheduler_type = ""
# do not combine the two
if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation:
self.hyperparameters.scheduler = ""
if self.hyperparameters.scheduler == "":
self.hyperparameters.torch_scheduler = True
# Preserves the old behavior
class NaiveTokenizer:
def get_vocab( self ):
"""
if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5:
return json.loads( cfg.hdf5['symmap'].asstr()[()] )
"""
return {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '': 179, '': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, '': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, '': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, '': 220, 'eˈ': 221, 'ʍ': 222, '': 223, '': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228}
def encode( self, s ):
symmap = self.get_vocab()
phones = " ".join( list(s) )
# do merge
for merge in [ "\u02C8", "\u02CC", "\u02D0" ]:
phones = phones.replace( f' {merge}', merge )
phones = phones.split(" ")
# cleanup
phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ]
# add bos / eos
phones = ["<s>"] + [ " " if not p else p for p in phones ] + ["</s>"]
# tokenize
return [*map(symmap.get, phones)]
cfg = Config.from_cli()
# OmegaConf might not coerce the dicts into the @dataclass decorated classes, so we (try to) coerce them ourselves
try:
cfg.format()
if cfg.dataset.use_hdf5:
cfg.load_hdf5()
except Exception as e:
print("Error while parsing config YAML:", e)
pass
try:
from transformers import PreTrainedTokenizerFast
cfg.tokenizer = (cfg.relpath if cfg.cfg_path is not None else Path("./data/")) / cfg.tokenizer
cfg.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(cfg.tokenizer))
except Exception as e:
cfg.tokenizer = NaiveTokenizer()
print("Error while parsing tokenizer:", e)
pass
if __name__ == "__main__":
print(cfg)