1074 lines
43 KiB
Python
Executable File
1074 lines
43 KiB
Python
Executable File
import copy
|
||
import diskcache
|
||
import h5py
|
||
import json
|
||
import os
|
||
import subprocess
|
||
import sys
|
||
import time
|
||
import argparse
|
||
import yaml
|
||
import random
|
||
import logging
|
||
import itertools
|
||
|
||
import torch
|
||
import numpy as np
|
||
|
||
from dataclasses import asdict, dataclass, field
|
||
|
||
from functools import cached_property
|
||
from pathlib import Path
|
||
|
||
from .utils.distributed import world_size
|
||
from .utils.io import torch_load
|
||
from .utils import set_seed, prune_missing
|
||
|
||
@dataclass()
|
||
class BaseConfig:
|
||
yaml_path: str | None = None # path passed in through --yaml
|
||
|
||
@property
|
||
def cfg_path(self):
|
||
if self.yaml_path:
|
||
return Path(self.yaml_path.parent)
|
||
|
||
return Path(__file__).parent.parent / "data"
|
||
|
||
@property
|
||
def rel_path(self):
|
||
return Path(self.cfg_path)
|
||
|
||
@property
|
||
def cache_dir(self):
|
||
return self.rel_path / ".cache"
|
||
|
||
@property
|
||
def data_dir(self):
|
||
return self.rel_path / "data"
|
||
|
||
@property
|
||
def metadata_dir(self):
|
||
return self.rel_path / "metadata"
|
||
|
||
@property
|
||
def ckpt_dir(self):
|
||
return self.rel_path / "ckpt"
|
||
|
||
@property
|
||
def log_dir(self):
|
||
return self.rel_path / "logs" / str(self.start_time)
|
||
|
||
@cached_property
|
||
def start_time(self):
|
||
return int(time.time())
|
||
|
||
@cached_property
|
||
def git_commit(self):
|
||
try:
|
||
cmd = "git rev-parse HEAD"
|
||
return subprocess.check_output(cmd.split()).decode("utf8").strip()
|
||
except:
|
||
return ""
|
||
|
||
@cached_property
|
||
def git_status(self):
|
||
try:
|
||
cmd = "git status"
|
||
return subprocess.check_output(cmd.split()).decode("utf8").strip()
|
||
except:
|
||
return ""
|
||
|
||
def dumps(self):
|
||
data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")}
|
||
data = {k: v for k, v in data.items() if not callable(v)}
|
||
return json.dumps(data, indent=2, default=str)
|
||
|
||
def dump(self, path=None):
|
||
if path is None:
|
||
path = self.log_dir / "cfg.json"
|
||
path.parent.mkdir(parents=True, exist_ok=True)
|
||
with open(path, "w") as f:
|
||
f.write(self.dumps())
|
||
|
||
# ick
|
||
@classmethod
|
||
def prune_missing( cls, yaml ):
|
||
default = cls(**{})
|
||
default.format()
|
||
yaml, missing = prune_missing( source=default, dest=yaml )
|
||
if missing:
|
||
_logger.warning(f'Missing keys in YAML: {missing}')
|
||
return yaml
|
||
|
||
@classmethod
|
||
def from_yaml( cls, yaml_path ):
|
||
state = {}
|
||
state = yaml.safe_load(open(yaml_path, "r", encoding="utf-8"))
|
||
state.setdefault("yaml_path", yaml_path)
|
||
state = cls.prune_missing( state )
|
||
return cls(**state)
|
||
|
||
@classmethod
|
||
def from_model( cls, model_path, lora_path=None ):
|
||
if not model_path.exists():
|
||
raise Exception(f'Model path does not exist: {model_path}')
|
||
|
||
# load state dict and copy its stored model config
|
||
model_state_dict = [ torch_load( model_path )["config"] | { "path": model_path, "attention": "auto" } ] if model_path and model_path.exists() else []
|
||
lora_state_dict = [ torch_load( lora_path )["config"] | { "path": lora_path } ] if lora_path and lora_path.exists() else []
|
||
|
||
state = { "models": model_state_dict, "loras": lora_state_dict, "trainer": { "load_state_dict": True } }
|
||
return cls(**state)
|
||
|
||
@classmethod
|
||
def from_cli(cls, args=sys.argv):
|
||
# legacy support for yaml=`` format
|
||
for i, arg in enumerate(args):
|
||
if arg.startswith("yaml"):
|
||
args[i] = f'--{arg}'
|
||
|
||
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
|
||
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
|
||
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
|
||
parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too
|
||
args, unknown = parser.parse_known_args(args=args)
|
||
|
||
if args.model:
|
||
return cls.from_model( args.model, args.lora )
|
||
|
||
if args.yaml:
|
||
return cls.from_yaml( args.yaml )
|
||
|
||
return cls(**{})
|
||
|
||
def __repr__(self):
|
||
return str(self)
|
||
|
||
def __str__(self):
|
||
return self.dumps()
|
||
|
||
@dataclass()
|
||
class Dataset:
|
||
training: list[Path] = field(default_factory=lambda: []) # paths to load into the training dataset
|
||
validation: list[Path] = field(default_factory=lambda: []) # paths to load into the validation dataset
|
||
noise: list[Path] = field(default_factory=lambda: []) # paths to load into the noise dataset
|
||
|
||
# to-do: replace these since I feel this can be a bottleneck
|
||
speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" # function eval'd to extract a speaker's name from an utternace path
|
||
speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'" # function eval'd to extract a speaker's group from an utternace path
|
||
# to-do: validate if I can ignore this since this is an artifact from when I only saved phonemes and encoded audio, and no metadata
|
||
speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups
|
||
|
||
use_hdf5: bool = False # whether to load from an HDF5 dataset
|
||
hdf5_name: str = "data.h5" # file name to load the HDF5 dataset
|
||
hdf5_flag: str = "a" # flag to load the HDF5 file, automatically adjusted anyways
|
||
|
||
use_metadata: bool = False # use genretaed metadata to aid in dataset loading
|
||
|
||
validate: bool = True # validate each utterance on wheter it can be included based on duration range caps
|
||
workers: int = 8 # number of dataloader workers to spawn
|
||
cache: bool = True # use diskcache to cache the dataset
|
||
|
||
min_utterances: int = 2 # minimum number of utterances a speaker can have
|
||
duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0]) # the duration range an utterance can be to be included in the dataset
|
||
|
||
sample_type: str = "path" # path | speaker
|
||
sample_order: str = "interleaved" # duration
|
||
sample_shuffle: bool = True # shuffles the indices in the sampler
|
||
sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable
|
||
# for a full sized model with 12GiB of VRAM for Encodec, 120 seconds is just enough
|
||
# for a full sized model with 24GiB of VRAM for Encodec, 380 seconds is 80% VRAM consumed (but it might be limited by batch size)
|
||
|
||
prompt_duration_range: list[float] = field(default_factory=lambda: [3.0, 6.0]) # the duration range the input prompts can be
|
||
prompt_max_samples: int = 3 # maximum number of utterances that can be included in an input prompt for training
|
||
prompt_continuous_utterance_p: float = 0.0 # probability to use the target utterance as an input prompt rather than using a different utterance
|
||
prompt_similar_p: float = 0.75 # odds of sampling for a similar prompt instead of a random prompt
|
||
prompt_similar_top_k: int = 1 # top-k similar candidates to sample from
|
||
prompt_similar_top_k_offset: int = 0 # offset from the top-k to sample from
|
||
prompt_inject_noise: bool = False # adds noise to the input prompt waveform to try and vary things
|
||
|
||
resps_max_samples: int = 1 # number of samples to target for training
|
||
resps_append_p: float = 1.0 # probability to append another sample to the training target
|
||
resps_pad_silence_p: float = 0.0 # probability to pad resp with silence to fit within the next window
|
||
|
||
tasks_list: list[str] = field(default_factory=lambda: ["tts"]) # list of tasks to train against
|
||
reencode_on_concat: bool = False # whether to concat audio by decode => concat => encode, or naively concat codes
|
||
reencode_device: str = "cpu" # "cpu" is slower but saves memory, cuda throws [rank0]: RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
|
||
noise_scale: float = 0.25 # scaling noise value
|
||
retokenize_text: bool = False
|
||
|
||
_frames_per_second: int = 0 # allows setting your own hint
|
||
|
||
@cached_property
|
||
def frames_per_second(self):
|
||
if self._frames_per_second > 0:
|
||
return self._frames_per_second
|
||
|
||
if cfg.audio_backend == "dac":
|
||
if cfg.sample_rate == 44_100:
|
||
return 87
|
||
if cfg.sample_rate == 16_000:
|
||
return 50
|
||
|
||
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
|
||
return 75
|
||
|
||
@property
|
||
def min_phones(self):
|
||
return self.phones_range[0]
|
||
@property
|
||
def max_phones(self):
|
||
return self.phones_range[1]
|
||
@property
|
||
def min_duration(self):
|
||
return self.duration_range[0]
|
||
@property
|
||
def max_duration(self):
|
||
return self.duration_range[1]
|
||
|
||
# collection of experimental variables that should not be tampered with unless you know what you're doing
|
||
@dataclass()
|
||
class ModelExperimentalSettings:
|
||
hf: bool = False # strictly utilizes a HF model and handles converting input IDs / outputs accordingly
|
||
interleave: bool = False # use an interleaved AR rather than a split AR + NAR (worse performance and results due to everything being causal)
|
||
split_classifiers: bool = False # each RVQ level gets its own classifier / output proj / LM head rather than sharing one for all RVQ levels (to-do: also split for text/prom)
|
||
audio_embedding_sums: bool = False # whether each pass uses the previous RVQ codes or only the current level
|
||
# a model trained not summing audio embeddings *can* have this enabled without any apparent issues
|
||
# a model trained to sum *cannot* have this disabled without any apparent issues, or at least the ar+nar-retnet-8 can't.
|
||
# in theory a model that is trained to sum embeddings can peform better due to "seeing" previous levles (due to the R in RVQ standing for residuals...), but in practice it seems fine to not do so
|
||
audio_embedding_mode: str | None = None # None | "exclusive" | "inclusive", subjugates the audio backend's encoding/decoding model for embeddings
|
||
kv_heads: int = 0 # MHA or GQA (for supported backends)
|
||
rvq_levels_p: str | list = "auto" # determines odds of selecting RVQ levels when training, "equal" will make each level equally likely
|
||
rvq_level_range: list = field(default_factory=lambda: []) # some cringe to try and limit the RVQ training range for LoRAs, isn't necesary
|
||
unified_position_ids: bool = True # False will generate position IDs partitioned for each section
|
||
tie_classifier_to_embedding: bool = False # Ties the classifier output to their respective embeddings, this does not seem to do anything good in testing
|
||
|
||
# performs token dropout to compensate for errors
|
||
token_dropout_error: float = 0.0 # probability to nudge a token by ±1
|
||
token_dropout_rate: float = 0.0 # probability to randomly set a token to a special dropout value
|
||
token_dropout_rvq_levels: list = field(default_factory=lambda: [1,8]) # determines which levels to do dropout, by default do not do dropout on RVQ level 0
|
||
|
||
causal_size: int = 1 # experimental setting to see if I can just do parallel decoding in chunks instead of one-at-a-time without resorting to exotic solutions
|
||
# VALL-E 2's approach of "combining token embeddings to group them" sounds terribad for a shared AR/NAR model
|
||
# however, introducing partial parallel decoding for the AR maybe maybe MAYBE might help try and unify the AR/NAR tasks better, MAYBE
|
||
# it just seems like a bitch to try and train something worthwhile with it, since there's crackles every other token
|
||
# RetNet's chunked inferencing might be a better place for this
|
||
|
||
len_train_p: float = 0.05 # odds of injecting a "len" task within the model for NAR-len
|
||
# to-to: just incorporate this as a task instead
|
||
|
||
layerskip: bool = False # layerskip compatible model (or training for)
|
||
#layerskip_rvq_levels: list = field(default_factory=lambda: []) # RVQ levels to train / inference layerskip for (to-do: implement, see if it matters)
|
||
layerskip_r: int = 2 # number of layers to factor into early-exit loss calc
|
||
layerskip_p_max: float = 0.1 # maximum probabilty to dropout the last layer, used for calculating layer dropout probabilities
|
||
layerskip_e_scale: float = 0.2 # early-exit loss scalar value
|
||
|
||
# I really need to clean this up
|
||
@dataclass()
|
||
class Model:
|
||
name: str = "ar+nar" # vanity name for the model
|
||
version: int = 5 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding, 3+ = additional embeddings
|
||
size: str | dict = "full" # preset string or explicitly defined dimensionality
|
||
resp_levels: int = 8 # RVQ-bin levels this model supports
|
||
tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") (unused)
|
||
langs: int = 1 # defined languages (semi-unused)
|
||
tones: int = 1 # defined tones (unsued)
|
||
experts: int = 1 # for mixtral / retnet-ts
|
||
arch_type: str = "llama" # underling LM architecture used
|
||
training: bool = True # I really need to attend to this
|
||
frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training
|
||
attention: str = "auto" # for llama arch_types: attention used
|
||
dropout: float = 0.1 # adjustable dropout value
|
||
path: Path | None = None
|
||
#loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 1.0, "resp": 1.0 }) # disable it by default since it causes a little more harm than good
|
||
loss_factors: dict = field(default_factory=lambda: {})
|
||
capabilities: list = field(default_factory=lambda: ["ar", "nar"]) # + ["lang", "tone"] if you have your dataset labeled for such
|
||
|
||
experimental: dict | ModelExperimentalSettings | None = None # experimental settings
|
||
|
||
def get(self, name=None):
|
||
return [ self ] if not name or self.name == name else []
|
||
|
||
def loss_factor(self, k):
|
||
return self.loss_factors[k] if k in self.loss_factors else 1.0
|
||
|
||
@property
|
||
def max_levels(self):
|
||
# return RVQ level range
|
||
if self.experimental is not None and self.experimental.rvq_level_range:
|
||
return self.experimental.rvq_level_range[-1]
|
||
return self.resp_levels
|
||
|
||
@property
|
||
# required for fp8 as the lengths needs to be divisible by 8
|
||
def input_alignment(self):
|
||
return 8 if cfg.optimizations.fp8 else 0
|
||
|
||
@property
|
||
def full_name(self):
|
||
name = [ self.name ]
|
||
|
||
if isinstance(self.size, dict):
|
||
if hasattr(self.size, "label") and self.size['label']:
|
||
name.append(f"{self.size['label']}")
|
||
elif isinstance(self.size, str) and self.size != "full":
|
||
name.append(self.size)
|
||
|
||
if self.experts > 1:
|
||
name.append(f'{self.experts}x'+self.arch_type.replace("/", "-"))
|
||
else:
|
||
name.append(self.arch_type.replace("/", "-"))
|
||
|
||
if cfg.optimizations.bitnet:
|
||
name.append("bitnet")
|
||
|
||
name.append(f'{self.resp_levels}')
|
||
|
||
return "-".join(name)
|
||
|
||
@property
|
||
def tokens(self):
|
||
return self.audio_tokens
|
||
|
||
@property
|
||
def audio_tokens(self):
|
||
if isinstance(self.size, dict) and hasattr(self.size, "audio_tokens"):
|
||
return self.size['audio_tokens']
|
||
return 1024
|
||
|
||
@property
|
||
def text_tokens(self):
|
||
if isinstance(self.size, dict) and hasattr(self.size, "text_tokens"):
|
||
return self.size['text_tokens']
|
||
return 256
|
||
|
||
@property
|
||
def dim(self):
|
||
if isinstance(self.size, dict) and hasattr(self.size, "dim"):
|
||
return self.size['dim']
|
||
|
||
if isinstance(self.size, float):
|
||
return math.floor(1024 * self.size)
|
||
|
||
if self.size == "quarter":
|
||
return 256
|
||
if self.size == "half":
|
||
return 512
|
||
return 1024
|
||
|
||
@property
|
||
def heads(self):
|
||
if isinstance(self.size, dict) and hasattr(self.size, "heads"):
|
||
return self.size['heads']
|
||
|
||
if isinstance(self.size, float):
|
||
return math.floor(16 * self.size)
|
||
|
||
if self.size == "quarter":
|
||
return 4
|
||
if self.size == "half":
|
||
return 8
|
||
return 16
|
||
|
||
@property
|
||
def layers(self):
|
||
if isinstance(self.size, dict) and hasattr(self.size, "layers"):
|
||
return self.size['layers']
|
||
|
||
if self.size == "double":
|
||
return 24
|
||
return 12
|
||
|
||
@property
|
||
def activation_checkpointing(self):
|
||
return cfg.trainer.activation_checkpointing
|
||
|
||
@property
|
||
def gradient_checkpointing(self):
|
||
return cfg.trainer.gradient_checkpointing
|
||
|
||
@property
|
||
def lora_policy(self):
|
||
include = ["model"] # by default only adapt the main model (not embeddings nor classifier/output projection/LM head/whatever)
|
||
exclude = []
|
||
|
||
if self.arch_type == "llama":
|
||
include = ["self_attn", "mlp"] # target only the attention + mlp
|
||
exclude = ["self_attn.k_proj"] # common literature says to ignore it
|
||
if self.arch_type == "retnet":
|
||
include = ["layers."] # target the core layers of the RetNet and ignore the auxiliary stuff
|
||
exclude = ["retention.k_proj"] # attention-based transformers ignore the K, so might as well ignore it for the retnet
|
||
|
||
return dict(include=include, exclude=exclude)
|
||
|
||
# should be renamed to Adapters
|
||
@dataclass()
|
||
class LoRA:
|
||
name: str = "lora" # vanity name
|
||
# to-do: find sane default values
|
||
rank: int = 128 # rank for the LoRA
|
||
alpha: int = 128 # rank for the LoRA
|
||
training: bool = True #
|
||
embeddings: bool = False # train the embedding too
|
||
parametrize: bool = False # whether to use the parameterized pathway for LoRAs or not
|
||
rvq_levels: list[int] = field(default_factory=lambda: []) # determines RVQ levels to activate the LoRA
|
||
path: Path | None = None
|
||
|
||
@property
|
||
def full_name(self):
|
||
name = [ self.name, f"r{self.rank}", f"a{self.alpha}" ]
|
||
return "-".join(name)
|
||
|
||
# actually not needed anymore
|
||
def active_level( self, level ):
|
||
if not self.rvq_levels:
|
||
return True
|
||
return level in self.rvq_levels
|
||
|
||
@dataclass()
|
||
class Hyperparameters:
|
||
batch_size: int = 8 # number of samples per training batch
|
||
gradient_accumulation_steps: int = 32 # number of steps to accumulate gradients before updating
|
||
gradient_clipping: int | float = 10 # largest size a gradient norm can be
|
||
|
||
optimizer: str = "Adamw" # optimizer to use, should be 'Prodigyopt" now
|
||
optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
|
||
|
||
learning_rate: float = 3.25e-4 # should be 1.0 for ProdigyOpt
|
||
warmup_steps: int = 0 # number of steps to warm up the optimizer before performing updates, I think, this is just passed to deepspeed
|
||
|
||
scheduler: str = "" # scheduler to use, currently don't ever use one so this doesn't really matter
|
||
scheduler_type: str = "" # deprecated
|
||
scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
|
||
|
||
autotune: bool = False # to do deepspeed's autotuning
|
||
autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
|
||
|
||
torch_optimizer: bool = False # if the requested optimizer is torch-derived rather than deepspeed supplied
|
||
torch_scheduler: bool = False # if the requested scheduler is torch-derived rather than deepspeed-supplied
|
||
|
||
@dataclass()
|
||
class Evaluation:
|
||
batch_size: int = 64 # number of samples per batch during eval / val
|
||
frequency: int = 250 # do eval / val every X iterations
|
||
size: int = 64 # number of samples to generate during eval / val
|
||
kwargs: dict = field(default_factory=lambda: {}) # inferencing kwargs
|
||
|
||
# necessary in order to make it not confusing with requiring not-directyl exposed arguments passed to the model
|
||
@cached_property
|
||
def ar_kwargs( self ):
|
||
kwargs = {} | self.kwargs
|
||
return dict(
|
||
max_steps=kwargs.pop("max_ar_steps", 500),
|
||
sampling_temperature=kwargs.pop("ar_temp", 0.5),
|
||
sampling_min_temperature=kwargs.pop("min_ar_temp", -1),
|
||
sampling_top_p=kwargs.pop("top_p", 1.0), sampling_top_k=kwargs.pop("top_k", 0), sampling_min_p=kwargs.pop("min_p", 0.0),
|
||
sampling_repetition_penalty=kwargs.pop("repetition_penalty", 1.125), sampling_repetition_penalty_decay=kwargs.pop("repetition_penalty_decay", 0),
|
||
sampling_length_penalty=kwargs.pop("length_penalty", 0),
|
||
sampling_beam_width=kwargs.pop("beam_width", 0),
|
||
sampling_mirostat_tau=kwargs.pop("mirostat_tau", 0),
|
||
sampling_mirostat_eta=kwargs.pop("mirostat_eta", 0),
|
||
sampling_dry_multiplier=kwargs.pop("dry_multiplier", 0),
|
||
sampling_dry_base=kwargs.pop("dry_base", 0),
|
||
sampling_dry_allowed_length=kwargs.pop("dry_allowed_length", 0),
|
||
sampling_entropix=kwargs.pop("entropix_sampling", False),
|
||
)
|
||
|
||
@cached_property
|
||
def nar_kwargs( self ):
|
||
kwargs = {} | self.kwargs
|
||
return dict(
|
||
max_levels=kwargs.pop("max_nar_levels", 0),
|
||
sampling_temperature=kwargs.pop("nar_temp", 0.0),
|
||
sampling_min_temperature=kwargs.pop("min_nar_temp", -1),
|
||
sampling_top_p=kwargs.pop("top_p", 1.0), sampling_top_k=kwargs.pop("top_k", 0.0), sampling_min_p=kwargs.pop("min_p", 0.0),
|
||
sampling_repetition_penalty=kwargs.pop("repetition_penalty", 1.0), sampling_repetition_penalty_decay=kwargs.pop("repetition_penalty_decay", 0.0),
|
||
)
|
||
|
||
@dataclass()
|
||
class DeepSpeed:
|
||
zero_optimization_level: int = 0 # doesn't seem to work
|
||
use_compression_training: bool = False # cope
|
||
compression_bits: int = 8 # cope
|
||
inferencing: bool = False # for using DeepSpeed's inferencing wrapper instead
|
||
|
||
amp: bool = False # use DeepSpeed's AMP (requires some other package installed apparently)
|
||
|
||
config: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
|
||
|
||
@cached_property
|
||
def ds_cfg(self):
|
||
optimizer_params = cfg.hyperparameters.optimizer_params
|
||
|
||
if 'lr' not in optimizer_params:
|
||
optimizer_params["lr"] = cfg.hyperparameters.learning_rate,
|
||
|
||
scheduler_params = cfg.hyperparameters.scheduler_params
|
||
if 'warmup_num_steps' not in scheduler_params:
|
||
scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps
|
||
|
||
if 'total_num_steps' not in scheduler_params:
|
||
scheduler_params['total_num_steps'] = cfg.trainer.iterations
|
||
|
||
autotune_params = cfg.hyperparameters.autotune_params
|
||
|
||
if "enabled" not in autotune_params:
|
||
autotune_params['enabled'] = True
|
||
|
||
if "results_dir" not in autotune_params:
|
||
autotune_params['results_dir'] = str( cfg.rel_path / "autotune" / "results" )
|
||
|
||
if "exps_dir" not in autotune_params:
|
||
autotune_params['exps_dir'] = str( cfg.rel_path / "autotune" / "exps_" )
|
||
|
||
# DeepSpeed fp16 is incompatible with its AMP
|
||
if cfg.trainer.weight_dtype.lower() == "float16":
|
||
self.amp = False
|
||
|
||
# disable local AMP
|
||
if self.amp:
|
||
cfg.trainer.amp = False
|
||
|
||
ds_cfg = {
|
||
"train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size,
|
||
"gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps,
|
||
"optimizer": {
|
||
"type": cfg.hyperparameters.optimizer,
|
||
"params": optimizer_params,
|
||
} if not cfg.hyperparameters.torch_optimizer else None,
|
||
"scheduler": {
|
||
"type": cfg.hyperparameters.scheduler,
|
||
"params": scheduler_params,
|
||
} if not cfg.hyperparameters.torch_scheduler else None,
|
||
"gradient_clipping": cfg.hyperparameters.gradient_clipping,
|
||
"fp16": {
|
||
"enabled": cfg.trainer.weight_dtype.lower() == "float16",
|
||
"auto_cast": True, # ???
|
||
"loss_scale": 0.0 if cfg.trainer.scale_loss else 1.0,
|
||
},
|
||
"bf16": {
|
||
"enabled": cfg.trainer.weight_dtype.lower() == "bfloat16",
|
||
},
|
||
"amp": {
|
||
"enabled": self.amp,
|
||
},
|
||
"autotuning": autotune_params if cfg.hyperparameters.autotune else None,
|
||
"compression_training": {
|
||
"weight_quantization": {
|
||
"shared_parameters":{
|
||
"enabled": True,
|
||
"quantizer_kernel": True,
|
||
"schedule_offset": 0,
|
||
"quantize_groups": 64,
|
||
"quantize_verbose": True,
|
||
"quantization_type": "symmetric",
|
||
"rounding": "nearest",
|
||
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
|
||
"fp16_mixed_quantize":{
|
||
"enabled": False,
|
||
"quantize_change_ratio": 1
|
||
}
|
||
},
|
||
"different_groups": {
|
||
"wq1": {
|
||
"params": {
|
||
"start_bits": self.compression_bits,
|
||
"target_bits": self.compression_bits,
|
||
"quantization_period": 0
|
||
},
|
||
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
|
||
}
|
||
}
|
||
},
|
||
"activation_quantization": {
|
||
"shared_parameters":{
|
||
"enabled": True,
|
||
"quantizer_kernel": True,
|
||
"schedule_offset": 0,
|
||
"quantize_groups": 64,
|
||
"quantize_verbose": True,
|
||
"quantization_type": "symmetric",
|
||
"rounding": "nearest",
|
||
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
|
||
"fp16_mixed_quantize":{
|
||
"enabled": False,
|
||
"quantize_change_ratio": 1
|
||
}
|
||
},
|
||
"different_groups": {
|
||
"aq1": {
|
||
"params": {
|
||
"bits": self.compression_bits,
|
||
},
|
||
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
|
||
}
|
||
}
|
||
},
|
||
} if self.use_compression_training else None,
|
||
"zero_optimization": {
|
||
"stage": self.zero_optimization_level,
|
||
"contiguous_gradients": True,
|
||
"overlap_comm": True,
|
||
"reduce_scatter": True,
|
||
"reduce_bucket_size": 5e8,
|
||
"allgather_bucket_size": 5e8,
|
||
"sub_group_size": 5e8,
|
||
"round_robin_gradients": True,
|
||
"offload_optimizer": {
|
||
"device": "cpu",
|
||
"pin_memory": True
|
||
},
|
||
"offload_param": {
|
||
"device": "cpu",
|
||
"pin_memory": True
|
||
},
|
||
"zero_quantized_weights": self.use_compression_training,
|
||
"zero_hpz_partition_size": world_size(),
|
||
"zero_quantized_gradients": self.use_compression_training,
|
||
} if self.zero_optimization_level > 0 else None,
|
||
"comms_logger": {
|
||
"enabled": False
|
||
}
|
||
}
|
||
|
||
null_keys = [ k for k in ds_cfg if not ds_cfg[k] ]
|
||
for k in null_keys:
|
||
del ds_cfg[k]
|
||
|
||
if os.path.exists("./data/ds_config.json"):
|
||
ds_cfg.update(json.loads(open("./data/ds_config.json", "r", encoding="utf-8")).read())
|
||
else:
|
||
ds_cfg.update(self.config)
|
||
|
||
return ds_cfg
|
||
|
||
@dataclass()
|
||
class Trainer:
|
||
iterations: int = 1_000_000 # maximum iterations to train
|
||
|
||
save_tag: str = "step" # name to save checkpoints under, "step" will save as current step count
|
||
load_tag: str | None = None # tag to load checkpoint from; if None: will check against contents of `./ckpt/{model-name}/latest` for the checkpoint name
|
||
|
||
save_on_oom: bool = True # save if an OOM error is raised
|
||
save_on_quit: bool = True # save when quitting training
|
||
|
||
export_on_save: bool = False # export weights to local `fp32.pth` state_dict on saving a checkpoint
|
||
export_on_quit: bool = False # export weights to local `fp32.pth` state_dict on quitting training
|
||
|
||
save_frequency: int = 100 # frequency to save every X iterations
|
||
|
||
keep_last_checkpoints: int = 0 # number of checkpoints to keep, prunes oldest ones
|
||
|
||
load_state_dict: bool = False # loads `fp32.pth` state_dict, will automatically be done if a checkpoint is not found but `fp32.pth` exists
|
||
load_states: bool = True #
|
||
strict_loading: bool = False # sets strict_loading=True when loading the state dict
|
||
load_module_only: bool = False #
|
||
restart_step_count: bool = False # clears the training stats when loading a checkpoint
|
||
resize_modules: bool = False # automatically resizes
|
||
|
||
activation_checkpointing: bool | None = None # deprecated, should technically be used for only on activations and not the entire gradients, but HF only has gradient checkpointing
|
||
gradient_checkpointing: bool = True # enables gradient checkpointing to save VRAM at the cost of slightly reduced performance when training
|
||
|
||
check_for_oom: bool = True # checks for OOMs thrown during forward/backwards
|
||
gc_mode: str | None = None # deprecated, but marks when to do GC
|
||
|
||
weight_dtype: str = "float16" # dtype to have the model under
|
||
|
||
amp: bool = False # automatic mixed precision
|
||
ddp: bool = False # torch's internal DDP, automatically set if local backend is used and multiple GPUs are requested
|
||
#scale_loss: bool = False # whether to perform loss scaling (for FP16 training) (it actually seems more harmful than not for this specific workload)
|
||
|
||
load_webui: bool = False # load the web UI to allow inferencing during training, to-do: actually make this work
|
||
|
||
backend: str = "local" # training backend to use. currently supports "local" | "deepspeed"
|
||
deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed) # deepspeed settings
|
||
|
||
@cached_property
|
||
def dtype(self):
|
||
if self.weight_dtype == "float16":
|
||
return torch.float16
|
||
if self.weight_dtype == "bfloat16":
|
||
return torch.bfloat16
|
||
if self.weight_dtype == "float8_e5m2":
|
||
return torch.float8_e5m2
|
||
if self.weight_dtype == "float8_e4m3fn":
|
||
return torch.float8_e4m3fn
|
||
return torch.float32
|
||
|
||
@cached_property
|
||
def scale_loss(self):
|
||
# currently cannot feasibly apply loss scaling with DeepSpeed backend (it can handle it itself anyways)
|
||
return self.dtype == torch.float16
|
||
|
||
@dataclass()
|
||
class Inference:
|
||
backend: str = "local" # backend to use when inferencing
|
||
weight_dtype: str = "float16" # dtype to load the model under
|
||
amp: bool = True # automatic mixed precision during inferencing
|
||
|
||
normalize: bool = False # to-do: actually normalize input / output audio, I believe this might cause issues though
|
||
|
||
@property
|
||
def dtype(self):
|
||
if self.weight_dtype == "float16":
|
||
return torch.float16
|
||
if self.weight_dtype == "bfloat16":
|
||
return torch.bfloat16
|
||
if self.weight_dtype == "int8":
|
||
return torch.int8
|
||
if self.weight_dtype == "float8_e5m2":
|
||
return torch.float8_e5m2
|
||
if self.weight_dtype == "float8_e4m3fn":
|
||
return torch.float8_e4m3fn
|
||
return torch.float32
|
||
|
||
@dataclass()
|
||
class Optimizations:
|
||
injects: bool = False # overwrites default torch classes (not recommended)
|
||
replace: bool = False # replaces modules in place with the optimized version (recommended)
|
||
compile: bool | str = False # runs torch.compile on the model
|
||
|
||
linear: bool = True # inject/replace linear for BnB
|
||
embedding: bool = True # inject/replace embedding for BnB
|
||
optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation)
|
||
|
||
bitsandbytes: bool = False # use bitsandbytes
|
||
dadaptation: bool = False # use dadaptation optimizer
|
||
bitnet: bool = False # use bitnet
|
||
fp8: bool = False # use fp8
|
||
|
||
# to-do: validate this madness works still, I don't remember what schizodemon told me to do this
|
||
model_offloading: dict | None = None # automatically splits the model over a list of devices
|
||
# example: {"include":["model"], "limits": [ (6 * 1024) * (1024 ** 2), -1 ]} will have the GPU capped to 6GiB, and offload the remaining layers to CPU
|
||
# example: {"include":["model"], "device": ["cuda:0", "cuda:1"], "limits": [ 0.5, 0.5 ]} will have the GPU 1 try and use 50% of the model, and GPU 2 try and use the other 50%
|
||
# | {"assign": [[ f'layers.{i}.' for i in range(0,6) ], [ f'layers.{i}.' for i in range(6,12) ]]} will assign layers 0-5 to device 1, and 6-12 to device 2
|
||
|
||
tensorrt: bool = False
|
||
unsloth: bool = False # unsloth gradient checkpointing (it just offloads tensors to the CPU during backwards, I don't think it's significant enough to bother with on small models)
|
||
|
||
@dataclass()
|
||
class Config(BaseConfig):
|
||
device: str = "cuda" # target device
|
||
mode: str = "training" # "inferencing"
|
||
experimental: bool = False # debug flag
|
||
|
||
dataset: Dataset = field(default_factory=lambda: Dataset)
|
||
models: dict | list | None = field(default_factory=lambda: [])
|
||
loras: dict | list | None = field(default_factory=lambda: [])
|
||
hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters)
|
||
evaluation: Evaluation = field(default_factory=lambda: Evaluation)
|
||
trainer: Trainer = field(default_factory=lambda: Trainer)
|
||
inference: Inference = field(default_factory=lambda: Inference)
|
||
optimizations: Optimizations = field(default_factory=lambda: Optimizations)
|
||
|
||
tokenizer: str | None = None # tokenizer class
|
||
tokenizer_path: str = "./tokenizer.json" # tokenizer path
|
||
|
||
sample_rate: int = 24_000 # sample rate the model expects
|
||
audio_backend: str = "vocos" # audio backend to use "encodec" | "vocos" | "dac""
|
||
|
||
weights_format: str = "sft" # "pth" | "sft"
|
||
supported_weights_formats: list[str] = field(default_factory=lambda: ["sft", "safetensors", "pt", "pth"])
|
||
|
||
def set_audio_backend(self, audio_backend):
|
||
cfg.audio_backend = audio_backend
|
||
audio_extension = None
|
||
if audio_backend in ["encodec", "vocos"]:
|
||
audio_extension = ".enc"
|
||
cfg.sample_rate = 24_000
|
||
cfg.model.resp_levels = 8
|
||
elif audio_backend == "dac":
|
||
audio_extension = ".dac"
|
||
cfg.sample_rate = 44_100
|
||
cfg.model.resp_levels = 9
|
||
elif cfg.audio_backend == "audiodec":
|
||
audio_extension = ".dec"
|
||
sample_rate = 48_000
|
||
cfg.model.resp_levels = 8 # ?
|
||
else:
|
||
raise Exception(f"Unknown audio backend: {audio_backend}")
|
||
|
||
@property
|
||
def audio_backend_extension(self):
|
||
audio_extension = None
|
||
if self.audio_backend in ["encodec", "vocos"]:
|
||
audio_extension = ".enc"
|
||
elif self.audio_backend == "dac":
|
||
audio_extension = ".dac"
|
||
elif self.audio_backend == "audiodec":
|
||
audio_extension = ".dec"
|
||
return audio_extension
|
||
|
||
@property
|
||
def model(self):
|
||
for i, model in enumerate(self.models):
|
||
if model.training:
|
||
return model
|
||
|
||
return self.models[0] if len(self.models) > 0 else None
|
||
|
||
# should be renamed to adapters
|
||
@property
|
||
def lora(self):
|
||
for i, lora in enumerate(self.loras):
|
||
if lora.training:
|
||
return lora
|
||
|
||
return self.loras[0] if len(self.loras) > 0 else None
|
||
|
||
@property
|
||
def distributed(self):
|
||
return world_size() > 1
|
||
|
||
@cached_property
|
||
def get_spkr(self):
|
||
return eval(self.dataset.speaker_name_getter)
|
||
|
||
@cached_property
|
||
def get_spkr_group(self):
|
||
return eval(self.dataset.speaker_group_getter)
|
||
|
||
@cached_property
|
||
def diskcache(self):
|
||
if self.yaml_path is not None and self.dataset.cache:
|
||
return diskcache.Cache(self.cache_dir).memoize
|
||
return lambda: lambda x: x
|
||
|
||
# this gets called from vall_e.inference
|
||
def load_yaml( self, config_path ):
|
||
tmp = Config.from_yaml( config_path )
|
||
self.__dict__.update(tmp.__dict__)
|
||
|
||
def load_model( self, config_path, lora_path=None ):
|
||
tmp = Config.from_model( config_path, lora_path )
|
||
self.__dict__.update(tmp.__dict__)
|
||
|
||
def load_hdf5( self, write=False ):
|
||
if hasattr(self, 'hdf5'):
|
||
self.hdf5.close()
|
||
|
||
if self.distributed:
|
||
self.dataset.hdf5_flag = "r"
|
||
try:
|
||
self.hdf5 = h5py.File(f'{self.rel_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset
|
||
except Exception as e:
|
||
_logger.warning(f"Error while opening HDF5 file: {self.rel_path}/{self.dataset.hdf5_name}: {str(e)}")
|
||
self.dataset.use_hdf5 = False
|
||
|
||
# a very icky way to handle wildcard expansions
|
||
def expand( self, path ):
|
||
if not isinstance( path, Path ):
|
||
path = Path(path)
|
||
|
||
# do not glob
|
||
if "*" not in str(path):
|
||
return [ path ]
|
||
|
||
metadata_parent = cfg.metadata_dir / path.parent
|
||
data_parent = cfg.data_dir / path.parent
|
||
|
||
if metadata_parent.exists():
|
||
return [ path.parent / child.stem for child in Path(metadata_parent).glob(path.name) ]
|
||
|
||
if data_parent.exists():
|
||
return [ path.parent / child.name for child in Path(data_parent).glob(path.name) ]
|
||
|
||
return path
|
||
|
||
|
||
def format( self, training=True ):
|
||
if isinstance(self.dataset, type):
|
||
self.dataset = dict()
|
||
|
||
if isinstance(self.models, type):
|
||
self.models = dict()
|
||
|
||
if isinstance(self.loras, type):
|
||
self.loras = dict()
|
||
|
||
if isinstance(self.hyperparameters, type):
|
||
self.hyperparameters = dict()
|
||
|
||
if isinstance(self.evaluation, type):
|
||
self.evaluation = dict()
|
||
|
||
if isinstance(self.trainer, type):
|
||
self.trainer = dict()
|
||
|
||
if isinstance(self.inference, type):
|
||
self.inference = dict()
|
||
|
||
if isinstance(self.optimizations, type):
|
||
self.optimizations = dict()
|
||
|
||
if isinstance( self.dataset, dict ):
|
||
self.dataset = Dataset(**self.dataset)
|
||
|
||
if isinstance( self.hyperparameters, dict ):
|
||
self.hyperparameters = Hyperparameters(**self.hyperparameters)
|
||
|
||
if isinstance( self.evaluation, dict ):
|
||
self.evaluation = Evaluation(**self.evaluation)
|
||
|
||
if isinstance( self.trainer, dict ):
|
||
self.trainer = Trainer(**self.trainer)
|
||
|
||
if isinstance( self.trainer.deepspeed, dict ):
|
||
self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed)
|
||
|
||
if isinstance( self.inference, dict ):
|
||
self.inference = Inference(**self.inference)
|
||
|
||
if isinstance( self.optimizations, dict ):
|
||
self.optimizations = Optimizations(**self.optimizations)
|
||
|
||
# convert to expanded paths
|
||
self.dataset.training = [ self.expand(dir) for dir in self.dataset.training ]
|
||
self.dataset.validation = [ self.expand(dir) for dir in self.dataset.validation ]
|
||
self.dataset.noise = [ self.expand(dir) for dir in self.dataset.noise ]
|
||
# flatten
|
||
self.dataset.training = list(itertools.chain.from_iterable(self.dataset.training))
|
||
self.dataset.validation = list(itertools.chain.from_iterable(self.dataset.validation))
|
||
self.dataset.noise = list(itertools.chain.from_iterable(self.dataset.noise))
|
||
|
||
# do cleanup
|
||
for model in self.models:
|
||
if not isinstance( model, dict ):
|
||
continue
|
||
|
||
if "experimental" not in model or not model["experimental"]:
|
||
model["experimental"] = {}
|
||
|
||
if "prom_levels" in model:
|
||
_logger.warning(f"Deprecated flag found: {'cfg.model.prom_levels'}")
|
||
del model["prom_levels"]
|
||
|
||
if "interleave" in model:
|
||
_logger.warning(f"Deprecated flag found: {'cfg.model.interleave'}")
|
||
del model["interleave"]
|
||
|
||
if "p_rvq_levels" in model["experimental"]:
|
||
model["experimental"]["rvq_levels_p"] = model["experimental"]["p_rvq_levels"]
|
||
del model["experimental"]["p_rvq_levels"]
|
||
|
||
if "p_len_train" in model["experimental"]:
|
||
model["experimental"]["len_train_p"] = model["experimental"]["p_len_train"]
|
||
del model["experimental"]["p_len_train"]
|
||
|
||
self.models = [ Model(**model) if isinstance(model, dict) else model for model in self.models ]
|
||
self.loras = [ LoRA(**lora) if isinstance(lora, dict) else lora for lora in self.loras ]
|
||
|
||
if not self.models:
|
||
self.models = [ Model() ]
|
||
|
||
for model in self.models:
|
||
if isinstance( model.experimental, dict ):
|
||
model.experimental = ModelExperimentalSettings(**model.experimental)
|
||
|
||
if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler:
|
||
self.hyperparameters.scheduler = self.hyperparameters.scheduler_type
|
||
self.hyperparameters.scheduler_type = ""
|
||
|
||
# do not combine the two
|
||
if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation:
|
||
self.hyperparameters.scheduler = ""
|
||
|
||
if self.hyperparameters.scheduler == "":
|
||
self.hyperparameters.torch_scheduler = True
|
||
|
||
if self.trainer.backend == "local" and self.distributed:
|
||
self.trainer.ddp = True
|
||
|
||
if self.trainer.activation_checkpointing is not None:
|
||
self.trainer.gradient_checkpointing = self.trainer.activation_checkpointing
|
||
|
||
if not training:
|
||
self.dataset.use_hdf5 = False
|
||
|
||
# load our HDF5 file if requested here
|
||
if self.dataset.use_hdf5:
|
||
self.load_hdf5()
|
||
|
||
# load tokenizer
|
||
if self.tokenizer == "naive":
|
||
self.tokenizer = NaiveTokenizer()
|
||
else:
|
||
# ick...
|
||
try:
|
||
from transformers import PreTrainedTokenizerFast
|
||
|
||
tokenizer_path = self.rel_path / self.tokenizer_path
|
||
if tokenizer_path and not tokenizer_path.exists():
|
||
tokenizer_path = Path("./data/") / self.tokenizer_path
|
||
|
||
if tokenizer_path and tokenizer_path.exists():
|
||
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(tokenizer_path))
|
||
else:
|
||
self.tokenizer = NaiveTokenizer()
|
||
except Exception as e:
|
||
self.tokenizer = NaiveTokenizer()
|
||
_logger.warning(f"Error while parsing tokenizer: {str(e)}")
|
||
pass
|
||
|
||
|
||
# Preserves the old behavior
|
||
class NaiveTokenizer:
|
||
def get_vocab( self ):
|
||
"""
|
||
if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5:
|
||
return json.loads( cfg.hdf5['symmap'].asstr()[()] )
|
||
"""
|
||
return {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '”': 179, '“': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, ';ˌ': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, 'ᵝ': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, 'oˌ': 220, 'eˈ': 221, 'ʍ': 222, 'eˌ': 223, 'uˌ': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228}
|
||
|
||
@cached_property
|
||
def _bos_token( self ):
|
||
return self.get_vocab()["<s>"]
|
||
|
||
@cached_property
|
||
def _eos_token( self ):
|
||
return self.get_vocab()["</s>"]
|
||
|
||
def encode( self, s ):
|
||
symmap = self.get_vocab()
|
||
phones = " ".join( list(s) )
|
||
|
||
# do merge
|
||
for merge in [ "\u02C8", "\u02CC", "\u02D0" ]:
|
||
phones = phones.replace( f' {merge}', merge )
|
||
|
||
phones = phones.split(" ")
|
||
# cleanup
|
||
phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ]
|
||
# add bos / eos
|
||
phones = ["<s>"] + [ " " if not p else p for p in phones ] + ["</s>"]
|
||
# tokenize
|
||
return [*map(symmap.get, phones)]
|
||
|
||
def decode( self, t ):
|
||
s = ""
|
||
symmap = self.get_vocab()
|
||
reverse_symmap = {}
|
||
for k, v in symmap.items():
|
||
reverse_symmap[v] = k
|
||
|
||
for i, token in enumerate( t ):
|
||
s += reverse_symmap[token]
|
||
|
||
return s
|
||
|
||
|
||
_logger = logging.getLogger(__name__)
|
||
|
||
cfg = Config.from_cli()
|
||
|
||
# some safety for remapping deprecated formats and re-coercing uninitialized properties into actual types
|
||
try:
|
||
cfg.format()
|
||
except Exception as e:
|
||
_logger.error(f"Error while parsing config YAML: {str(e)}")
|
||
raise e # throw an error because I'm tired of silent errors messing things up for me
|
||
|
||
if __name__ == "__main__":
|
||
print(cfg)
|