vall-e/vall_e/models/arch/llama.py

477 lines
18 KiB
Python

# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
import math
import torch
import logging
import random
from typing import Literal, overload, Optional, Tuple, Union, List
from torch import Tensor, nn
from transformers.cache_utils import Cache
from transformers import LlamaModel, LlamaConfig, LlamaForCausalLM
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
_logger = logging.getLogger(__name__)
AVAILABLE_ATTENTIONS = []
LN_2 = 0.69314718056
try:
from transformers.utils import is_flash_attn_2_available
if is_flash_attn_2_available():
AVAILABLE_ATTENTIONS.append("flash_attention_2")
except Exception as e:
_logger.warning(f"Error while querying for `flash_attention_2` support: {str(e)}")
try:
from .attention.fused import attention as _fused_attention
def fused_attn_func(q, k, v, softmax_scale=None, causal=False, *args, **kwargs):
return _fused_attention( q, k, v, causal, softmax_scale )
AVAILABLE_ATTENTIONS.append("fused_attn")
except Exception as e:
_logger.warning(f"Error while querying for `fused_attn` support: {str(e)}")
is_rocm = any("AMD" in torch.cuda.get_device_properties(i).name for i in range(torch.cuda.device_count()))
is_ampere_or_newer_gpu = any(torch.cuda.get_device_properties(i).major >= 8 for i in range(torch.cuda.device_count()))
try:
if is_rocm:
# requires pain to set up on Navi3, and for no backwards (training) support
from flash_attn import flash_attn_func
AVAILABLE_ATTENTIONS.append("flash_attn")
elif not is_ampere_or_newer_gpu:
# Uses https://github.com/ZRayZzz/flash-attention-v100/
# Currently doesn't work because it's hard-coded to use a head dim of 128, will throw NaNs otherwise...
from flash_attn_v100 import flash_attn_func as flash_attn_v100_func
AVAILABLE_ATTENTIONS.append("flash_attn")
AVAILABLE_ATTENTIONS.append("flash_attn_v100") # needed to signal to use padding
def flash_attn_func(q, k, v, softmax_scale=None, causal=False, *args, **kwargs):
return flash_attn_v100_func(
q,
k,
v,
softmax_scale,
causal
)
else:
# Borrowed from https://github.com/turboderp/exllamav2/blob/master/exllamav2/attn.py#L32
# Adapted to provide flash_attn_v1 support
import flash_attn
flash_attn_ver = [int(t) for t in flash_attn.__version__.split(".") if t.isdigit()]
if flash_attn_ver <= [1, 0, 9]:
AVAILABLE_ATTENTIONS.append("flash_attn")
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
from einops import rearrange
# converts the flash_attn_2 calling convention to flash_attn_1's
def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=False, return_attn_probs=False, deterministic=False, *args, **kwargs):
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = k.shape[1]
q, k, v = [rearrange(x, 'b s ... -> (b s) ...').contiguous() for x in [q, k, v]]
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device)
cu_seqlens_k = cu_seqlens_q
return flash_attn_unpadded_func(
q, k, v,
cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs, deterministic
)
has_flash_attn = True
elif [2, 2, 1] <= flash_attn_ver < [2, 5, 7]:
AVAILABLE_ATTENTIONS.append("flash_attn")
from flash_attn import flash_attn_func
has_flash_attn = True
elif [2, 5, 7] <= flash_attn_ver:
AVAILABLE_ATTENTIONS.append("flash_attn")
from flash_attn import flash_attn_func, flash_attn_with_kvcache
signature = list(inspect.signature(flash_attn_func).parameters)
has_flash_attn_with_window = "window_size" in signature
has_flash_attn_with_softcap = "softcap" in signature
import flash_attn_2_cuda as flash_attn_cuda
has_flash_attn = True
has_flash_attn_with_paged = True
except Exception as e:
_logger.warning(f"Error while querying for `flash_attn` support: {str(e)}")
try:
from xformers.ops.fmha import memory_efficient_attention
from xformers.ops.fmha.attn_bias import LowerTriangularFromBottomRightMask, LowerTriangularMask
AVAILABLE_ATTENTIONS.append("xformers")
except Exception as e:
_logger.warning(f"Error while importing `xformers`: {str(e)}")
# to-do: find a better way to query for if there's available kernels since these return true regardless
if torch.backends.cuda.flash_sdp_enabled():
AVAILABLE_ATTENTIONS.append("flash_(sdpa)")
if torch.backends.cuda.mem_efficient_sdp_enabled():
AVAILABLE_ATTENTIONS.append("mem_efficient")
if torch.backends.cuda.math_sdp_enabled():
AVAILABLE_ATTENTIONS.append("math")
if torch.backends.cuda.cudnn_sdp_enabled():
AVAILABLE_ATTENTIONS.append("cudnn")
if AVAILABLE_ATTENTIONS:
AVAILABLE_ATTENTIONS.append("sdpa")
AVAILABLE_ATTENTIONS.append("default")
class LlamaAttention_Adapted(LlamaAttention):
def __init__(self, *args, **kwargs):
self.mode = kwargs.pop("mode", "sdpa")
if self.mode == "math":
self.mode = torch.nn.attention.SDPBackend.MATH
elif self.mode == "mem_efficient":
self.mode = torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION
elif self.mode == "flash_(sdpa)":
self.mode = torch.nn.attention.SDPBackend.FLASH_ATTENTION
elif self.mode == "cudnn":
self.mode = torch.nn.attention.SDPBackend.CUDNN_ATTENTION
super().__init__(*args, **kwargs)
# Adapted from LlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
mode = "default" if output_attentions else self.mode
dropout_rate = self.attention_dropout if self.training else 0.0
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attn_scores = None
if mode in ["xformers", "flash_attn"]:
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
"""
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
"""
if mode == "flash_attn":
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
causal=True,
softmax_scale=1.0 / math.sqrt(self.head_dim),
dropout_p=dropout_rate,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
elif mode == "xformers":
attn_output = memory_efficient_attention(
query_states,
key_states,
value_states,
attn_bias = LowerTriangularMask() if attention_mask is None or attention_mask[0, 0, 0, 1] == 0 else None,
scale = 1.0 / math.sqrt(self.head_dim),
p=dropout_rate
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_scores, past_key_value
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
if mode in ["fused_attn"]:
attn_output = fused_attn_func(
query_states,
key_states,
value_states,
causal=True,
softmax_scale=1.0 / math.sqrt(self.head_dim),
dropout_p=dropout_rate,
)
elif mode in ["default"]:
attn_scores = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
# cringe logic
attn_weights = (attn_scores + causal_mask) if attention_mask is not None else (attn_scores)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
else:
with torch.nn.attention.sdpa_kernel(self.mode):
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=dropout_rate,
is_causal=is_causal,
)
# cringe
if attn_scores is None and output_attentions:
attn_scores = attn_output
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_scores, past_key_value
class LlamaModel_Adapted(LlamaModel):
def __init__(self, *args, **kwargs):
self.layer_dropout_p = kwargs.pop("layer_dropout_p", 0.1)
self.early_exit_scale = kwargs.pop("early_exit_scale", 0.1)
self.early_exit_r = kwargs.pop("early_exit_r", 2)
super().__init__(*args, **kwargs)
self.layers_n = len(self.layers)
def dropoff_layer( self, l ):
if not self.training:
return False
# this could probably a LUT but I'm not fiending for aggressive mal-optimizations
D = math.exp((l * LN_2) / (self.layers_n - 1)) - 1
P = D * self.layer_dropout_p
return random.random() < P
def cirriculum( self, l, t=None ):
# no timestep data passed, just treat all layers as enabled
# there doesn't seem /too/ bad of a performance hit, but the paper mentions it affecting accuracy of the last layer if all layers had early exit
if t is None:
return 1
# YUCK
# this guarantees at least R layers are active at all intervals, which is important because this gives a division by zero otherwise
for i in range(self.early_exit_r):
if l == ((t % self.layers_n) + i * (self.layers_n // self.early_exit_r)) % self.layers_n:
return 1
return 0
def early_exit_loss( self, losses, t=None ):
return sum([ self.normalized_per_layer_loss_scale( l, t ) * losses[l] for l in range(0, self.layers_n) ])
def normalized_per_layer_loss_scale( self, l, t=None ):
return (self.cirriculum(l, t) * self.early_exit_factor( l )) / sum([ self.cirriculum(i, t) * self.early_exit_factor( i ) for i in range(0, self.layers_n) ])
def early_exit_factor( self, l ):
if 0 <= l and l < self.layers_n:
return self.early_exit_scale * sum([ i for i in range(0, l) ])
return self.layers_n - 1 + self.early_exit_scale * sum([ i for i in range(0, self.layers_n - 1) ])
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
layer_skip_lambda = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
_logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
_logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for l, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
if not self.dropoff_layer( l ):
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# check if we should early-exit
if layer_skip_lambda and layer_skip_lambda( l, hidden_states ):
#_logger.info(f"Early exit at layer: {l}")
break
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)