497 lines
14 KiB
Python
497 lines
14 KiB
Python
from .base import Base, list_to_tensor, Categorical
|
||
from ..config import cfg
|
||
|
||
import torch
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
|
||
import random
|
||
import math
|
||
from einops import rearrange
|
||
from torch import Tensor
|
||
from tqdm import trange
|
||
|
||
from ..emb.qnt import trim
|
||
|
||
class AR_NAR(Base):
|
||
@property
|
||
def causal(self):
|
||
return True
|
||
|
||
@property
|
||
def norm_type(self):
|
||
return "ln" # if self.n_resp_levels == 1 else "adaln"
|
||
|
||
@property
|
||
def arch_type(self) -> str:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.arch_type
|
||
return cfg.model.arch_type
|
||
|
||
@property
|
||
def n_prom_levels(self) -> int:
|
||
return cfg.model.prom_levels
|
||
|
||
@property
|
||
def n_resp_levels(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.resp_levels
|
||
return cfg.model.resp_levels
|
||
|
||
@property
|
||
def n_max_levels(self) -> int:
|
||
return cfg.model.max_levels
|
||
|
||
@property
|
||
def n_tasks(self) -> int:
|
||
return cfg.model.tasks
|
||
|
||
@property
|
||
def n_langs(self) -> int:
|
||
return cfg.model.langs
|
||
|
||
@property
|
||
def n_tones(self) -> int:
|
||
return cfg.model.tones
|
||
|
||
@property
|
||
def recurrent_chunk_size(self) -> int:
|
||
return 0
|
||
|
||
"""
|
||
@property
|
||
def rotary_embedding_base(self) -> float:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.rotary_embedding_base
|
||
return cfg.model.rotary_embedding_base
|
||
"""
|
||
|
||
@property
|
||
def interleave(self) -> bool:
|
||
return False
|
||
|
||
@property
|
||
def monolithic(self) -> bool:
|
||
return True
|
||
|
||
@property
|
||
def version(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.version
|
||
return cfg.model.version
|
||
|
||
def _prune(self, l: Tensor):
|
||
indices = (l == self.stop_token).nonzero()
|
||
if len(indices) == 0:
|
||
return l
|
||
return l[: indices.min().item()]
|
||
|
||
@staticmethod
|
||
def _unsqueeze_list(x_list, axis=-1):
|
||
return [x.unsqueeze(dim=axis) for x in x_list]
|
||
|
||
def forward(
|
||
self,
|
||
text_list: list[Tensor],
|
||
proms_list: list[Tensor],
|
||
resps_list: list[Tensor] | None = None,
|
||
|
||
lang_list: list[Tensor] | None = None,
|
||
tone_list: list[Tensor] | None = None,
|
||
|
||
max_steps: int = 1000,
|
||
max_levels: int = 0,
|
||
max_resp_context: int = -1,
|
||
|
||
sampling_temperature: float = 1.0,
|
||
sampling_min_temperature: float = -1.0,
|
||
sampling_top_k: int = -100,
|
||
sampling_top_p: float = 1.0,
|
||
sampling_repetition_penalty: float = 1.0,
|
||
sampling_repetition_penalty_decay: float = 0.0,
|
||
sampling_length_penalty: float = 0.0,
|
||
sampling_beam_width: int = 0,
|
||
sampling_mirostat_tau: float = 0.0,
|
||
sampling_mirostat_eta: float = 0.1,
|
||
):
|
||
device = text_list[0].device
|
||
batch_size = len(text_list)
|
||
|
||
# is training or NAR
|
||
if resps_list is not None:
|
||
n_levels_set = {r.shape[-1] for r in resps_list}
|
||
n_levels = next(iter(n_levels_set))
|
||
|
||
# is training
|
||
if n_levels == self.n_resp_levels:
|
||
# might be better to have this decided on the dataloader level
|
||
|
||
if cfg.experimental:
|
||
# makes higher levels less likely
|
||
def generate( lo=0, hi=8 ):
|
||
index = lo
|
||
p = random.random()
|
||
for i in range(lo, hi):
|
||
if p < 1.0 / (2 ** i):
|
||
index = i
|
||
return int(index)
|
||
|
||
quant_levels = torch.Tensor([ generate(0, self.n_resp_levels) for _ in range(batch_size) ]).to(dtype=torch.int16)
|
||
else:
|
||
quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
|
||
"""
|
||
if cfg.model.p_ar_level == "auto" or cfg.model.p_ar_level is None:
|
||
quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
|
||
else:
|
||
quant_levels = torch.Tensor([ 0 if random.random() < cfg.model.p_ar_level else random.randint(1, self.n_resp_levels) for _ in range(batch_size) ])
|
||
"""
|
||
|
||
targ_list = [r[..., l] for r, l in zip(resps_list, quant_levels)] # ensures we only have 1 RVQ-bin (our target)
|
||
resps_list = [r[..., 0] if l == 0 else r[..., :l] for r, l in zip(resps_list, quant_levels)] # r if l == 0 is technically correct since only r[:, 0] is passed through the embedding, but this should save some VRAM
|
||
|
||
"""
|
||
if cfg.experimental:
|
||
proms_list = [ r if l == 0 else trim(r, cfg.dataset.frames_per_second * 3) for r, l in zip(proms_list, quant_levels) ] # trim input prompt to 3 seconds
|
||
"""
|
||
|
||
# append stop tokens for AR
|
||
for i in range(batch_size):
|
||
if quant_levels[i] > 0:
|
||
continue
|
||
|
||
resps_list[i] = torch.cat([resps_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ])
|
||
targ_list[i] = torch.cat([targ_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ])
|
||
|
||
inputs = self.inputs(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=resps_list,
|
||
targ_list=targ_list,
|
||
lang_list=lang_list,
|
||
tone_list=tone_list
|
||
)
|
||
|
||
return super().forward(
|
||
inputs=inputs,
|
||
quant_levels=quant_levels,
|
||
)
|
||
# is NAR
|
||
if max_levels == 0:
|
||
max_levels = self.n_resp_levels - 1
|
||
|
||
prev_list = resps_list
|
||
|
||
for n in trange( max_levels, desc="NAR" ):
|
||
level = prev_list[0].shape[-1]
|
||
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
|
||
break
|
||
|
||
quant_levels = torch.full((len(text_list),), level)
|
||
|
||
inputs = self.inputs(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=prev_list,
|
||
lang_list=lang_list,
|
||
tone_list=tone_list,
|
||
)
|
||
|
||
logits = super().forward(
|
||
inputs=inputs,
|
||
quant_levels=quant_levels,
|
||
)
|
||
|
||
resps_list = super().sample(
|
||
logits=logits,
|
||
resps_list=prev_list,
|
||
quant_levels=quant_levels,
|
||
|
||
temperature=sampling_temperature,
|
||
min_temperature=sampling_min_temperature,
|
||
top_p=sampling_top_p,
|
||
top_k=sampling_top_k,
|
||
repetition_penalty=sampling_repetition_penalty,
|
||
repetition_penalty_decay=sampling_repetition_penalty_decay,
|
||
#length_penalty=sampling_length_penalty,
|
||
#beam_width=sampling_beam_width,
|
||
#mirostat=mirostat,
|
||
)
|
||
|
||
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
|
||
|
||
return prev_list
|
||
|
||
# is AR
|
||
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
|
||
stopped = torch.zeros(batch_size, device=device).bool()
|
||
|
||
recurrent_state = [] if cfg.inference.recurrent_forward else None
|
||
mirostat = [
|
||
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
|
||
] * batch_size if sampling_mirostat_tau > 0.0 else None
|
||
|
||
scores = [ 1.0 ] * sampling_beam_width
|
||
|
||
if self.interleave:
|
||
max_steps *= self.n_prom_levels
|
||
|
||
# get next in sequence
|
||
for n in trange(max_steps // max(1, self.recurrent_chunk_size), desc="AR"):
|
||
# experimental rolling response to avoid too-long perplexity hits despite RetNet allegedly fixing this.
|
||
# UNTESTED. In theory it would be better to also adjust the text, but there's no way of correlating text to segment of audio without something like wav2vec2
|
||
if max_resp_context > 0:
|
||
resps_list = self._unsqueeze_list([ sequence[-max_resp_context:] for sequence in sequence_list ] )
|
||
else:
|
||
resps_list = self._unsqueeze_list(sequence_list)
|
||
|
||
inputs = self.inputs(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=resps_list,
|
||
lang_list=lang_list,
|
||
tone_list=tone_list,
|
||
)
|
||
|
||
if recurrent_state is not None:
|
||
logits, recurrent_state = super().forward(
|
||
inputs=inputs,
|
||
state=recurrent_state,
|
||
)
|
||
else:
|
||
logits = super().forward(
|
||
inputs=inputs,
|
||
state=recurrent_state,
|
||
)
|
||
|
||
r = super().sample(
|
||
logits=logits,
|
||
resps_list=resps_list,
|
||
|
||
temperature=sampling_temperature,
|
||
min_temperature=sampling_min_temperature,
|
||
top_p=sampling_top_p,
|
||
top_k=sampling_top_k,
|
||
repetition_penalty=sampling_repetition_penalty,
|
||
repetition_penalty_decay=sampling_repetition_penalty_decay,
|
||
length_penalty=sampling_length_penalty,
|
||
beam_width=sampling_beam_width,
|
||
|
||
mirostat=mirostat,
|
||
)
|
||
|
||
if mirostat is not None:
|
||
# r is the state
|
||
mirostat = r
|
||
# extract token from state
|
||
r = [ state["token"] for state in mirostat ]
|
||
# we do it here because the sampler will already expand our logits list
|
||
elif sampling_beam_width > 0:
|
||
# expand tuple
|
||
r, s = r
|
||
# first step, expand batch
|
||
if batch_size == 1:
|
||
batch_size = sampling_beam_width
|
||
text_list = text_list * sampling_beam_width
|
||
proms_list = proms_list * sampling_beam_width
|
||
sequence_list = sequence_list * sampling_beam_width
|
||
stopped = torch.zeros(batch_size, device=device).bool()
|
||
|
||
scores = [ scores[i] + score for i, score in enumerate(s) ]
|
||
|
||
# append tokens
|
||
for i, ri in enumerate(r):
|
||
if self.stop_token in ri:
|
||
stopped[i] = True
|
||
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
|
||
|
||
# stop token found
|
||
stopped |= r == self.stop_token
|
||
if stopped.all().item():
|
||
break
|
||
|
||
# pick the best scoring candidate
|
||
# desu this is always going to be candidate 0
|
||
if sampling_beam_width:
|
||
sequence_list = [ sequence_list[0] ]
|
||
|
||
return [self._prune(r) for r in sequence_list]
|
||
|
||
|
||
def example_usage():
|
||
#cfg.trainer.backend = "local"
|
||
cfg.hyperparameters.gradient_accumulation_steps = 1
|
||
if cfg.audio_backend == "dac":
|
||
cfg.sample_rate = 44_000
|
||
|
||
from functools import partial
|
||
from einops import repeat
|
||
from tqdm import tqdm
|
||
|
||
from ..emb.qnt import decode_to_file, unload_model
|
||
from ..engines import Engine
|
||
from ..utils import wrapper as ml
|
||
|
||
import numpy as np
|
||
import re
|
||
|
||
device = "cuda"
|
||
x8 = partial(repeat, pattern="t -> t l", l=cfg.model.prom_levels)
|
||
|
||
def tokenize(content):
|
||
return torch.tensor( cfg.tokenizer.encode(content) )
|
||
|
||
def _load_quants(path) -> Tensor:
|
||
if cfg.audio_backend == "dac":
|
||
qnt = np.load(f'{path}.dac', allow_pickle=True)[()]
|
||
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.prom_levels, :].t().to(torch.int16)
|
||
return torch.load(f'{path}.pt')[0][:, :cfg.model.prom_levels].t().to(torch.int16)
|
||
|
||
qnt = _load_quants("./data/qnt")
|
||
|
||
|
||
text_list = [
|
||
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
|
||
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
|
||
]
|
||
proms_list = [
|
||
qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
]
|
||
resps_list = [
|
||
qnt[:, :].to(device),
|
||
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
||
]
|
||
|
||
text_list = text_list[:1]
|
||
proms_list = proms_list[:1]
|
||
resps_list = resps_list[:1]
|
||
|
||
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
|
||
kwargs = {
|
||
'n_tokens': 1024,
|
||
'd_model': 1024, # 256, # 1024, # 1536
|
||
'n_heads': 16, # 4, # 16, # 24
|
||
'n_layers': 8, # 32
|
||
'n_experts': 1,
|
||
|
||
'p_dropout': 0.1,
|
||
|
||
'l_padding': 8 if cfg.optimizations.fp8 else 0,
|
||
|
||
'config': cfg.model
|
||
}
|
||
|
||
"""
|
||
try:
|
||
kwargs['config'] = cfg.model
|
||
except Exception as e:
|
||
pass
|
||
"""
|
||
|
||
model = AR_NAR(**kwargs).to(device)
|
||
steps = 200
|
||
|
||
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.cfg_path is not None else "prodigy"
|
||
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.cfg_path is not None else ""
|
||
learning_rate = cfg.hyperparameters.learning_rate if cfg.cfg_path is not None else None
|
||
|
||
if cfg.optimizations.dadaptation:
|
||
# do not combine the two
|
||
if scheduler == "schedulefree":
|
||
scheduler = ""
|
||
|
||
learning_rate = 1.0
|
||
|
||
if optimizer == "prodigy":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0
|
||
|
||
optimizer = ml.Prodigy
|
||
elif optimizer == "adagrad":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-2
|
||
|
||
optimizer = ml.Adagrad
|
||
elif optimizer == "adamw":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-4
|
||
|
||
optimizer = ml.AdamW
|
||
elif optimizer == "sdg":
|
||
if learning_rate is None:
|
||
learning_rate = 1.0e-4
|
||
|
||
optimizer = ml.SGD
|
||
else:
|
||
raise ValueError(f"Unrecognized optimizer: {optimizer}")
|
||
|
||
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
|
||
|
||
optimizer = optimizer(model.parameters(), lr=learning_rate)
|
||
|
||
if scheduler == "schedulefree":
|
||
if isinstance(optimizer, ml.AdamW):
|
||
scheduler = ml.schedulefree.AdamWScheduleFree
|
||
elif isinstance(optimizer, ml.SGD):
|
||
scheduler = ml.schedulefree.SGDScheduleFree
|
||
else:
|
||
scheduler = None
|
||
|
||
if scheduler is not None:
|
||
print("Scheduler:", scheduler)
|
||
optimizer = scheduler( model.parameters(), lr = learning_rate )
|
||
|
||
if cfg.optimizations.replace and cfg.optimizations.linear:
|
||
model = ml.replace_linear( model )
|
||
|
||
if cfg.optimizations.replace and cfg.optimizations.embedding:
|
||
model = ml.replace_embedding( model )
|
||
|
||
engine = Engine(model=model, optimizer=optimizer)
|
||
|
||
torch.save( {
|
||
'module': model.state_dict()
|
||
}, "./data/test.pth" )
|
||
|
||
print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
||
|
||
@torch.inference_mode()
|
||
def sample( name, steps=1000 ):
|
||
if cfg.audio_backend == "dac" and name == "init":
|
||
return
|
||
|
||
engine.eval()
|
||
resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
|
||
|
||
if cfg.audio_backend != "dac":
|
||
for i, o in enumerate(resps_list):
|
||
_ = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
|
||
|
||
resps_list = [r.unsqueeze(-1) for r in resps_list]
|
||
resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
|
||
|
||
for i, o in enumerate(resps_list):
|
||
_ = decode_to_file(o, f"data/ar+nar.{i}.{name}.wav", device=device)
|
||
|
||
unload_model()
|
||
|
||
def train():
|
||
engine.train()
|
||
t = trange(steps)
|
||
for i in t:
|
||
stats = {"step": i}
|
||
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
||
stats |= {"grad_norm": engine.get_global_grad_norm()}
|
||
|
||
tqdm.write(f"{stats}")
|
||
|
||
torch.save( {
|
||
'module': model.state_dict()
|
||
}, "./data/test.pth" )
|
||
|
||
sample("init", 5)
|
||
train()
|
||
sample("final")
|
||
|
||
if __name__ == "__main__":
|
||
example_usage()
|