vall-e/vall_e
2024-08-01 20:56:28 -05:00
..
emb
engines naive model offloading support (handles automatically splitting parts of the model to requested device per memory constraints, either inferred or requested in the yaml, input tensors are automatically migrated to the right device, it SEEMS to work for training under the test trainer when split between GPU and CPU) (this was specifically only because that Flux imagegen model released so I can test it there) 2024-08-01 20:12:06 -05:00
ext
models it actually wasn't working because Engines.__init__() automatically moves the entire module to the requested device, which was being called after offloading the model in the test trainer (and it seems I cant do it without injecting a bunch of shit in modeling_llama.py) 2024-08-01 20:56:28 -05:00
utils it actually wasn't working because Engines.__init__() automatically moves the entire module to the requested device, which was being called after offloading the model in the test trainer (and it seems I cant do it without injecting a bunch of shit in modeling_llama.py) 2024-08-01 20:56:28 -05:00
__init__.py
__main__.py added option to set the causal size (how many tokens to sample per AR step), but requires the model to be trained for this (which explains why recurrent chunk sampling just doesn't work for the retnet tests, obvious in hindsight) 2024-07-30 20:53:51 -05:00
config.py it actually wasn't working because Engines.__init__() automatically moves the entire module to the requested device, which was being called after offloading the model in the test trainer (and it seems I cant do it without injecting a bunch of shit in modeling_llama.py) 2024-08-01 20:56:28 -05:00
data.py sanity cleanups with weird off-by-one-ness, cleaned up and validated vall_e.models.experimental works again 2024-07-27 15:36:05 -05:00
demo.py
export.py fix weird regression in handling checkpoints when backend is local, but deepspeed checkpoints are in (it was handled with LoRA loading but not real loading...) 2024-07-30 22:15:56 -05:00
inference.py fix weird regression in handling checkpoints when backend is local, but deepspeed checkpoints are in (it was handled with LoRA loading but not real loading...) 2024-07-30 22:15:56 -05:00
plot.py
samplers.py possible speedup for samplers that require a list of previous tokens (the DRY sampler made me realize that I should copy the tolist() thing from the rep pen sampler for everything else) 2024-07-29 20:23:26 -05:00
train.py sanity cleanups with weird off-by-one-ness, cleaned up and validated vall_e.models.experimental works again 2024-07-27 15:36:05 -05:00
webui.py added option to set the causal size (how many tokens to sample per AR step), but requires the model to be trained for this (which explains why recurrent chunk sampling just doesn't work for the retnet tests, obvious in hindsight) 2024-07-30 20:53:51 -05:00