716 lines
19 KiB
Python
716 lines
19 KiB
Python
# Grabbed and tweaked from https://github.com/ardfork/ComfyUI-flash-attention-triton/blob/master/fused_attention.py
|
|
# There's a bunch of other fused attentions out there and each one has its own problems it seems
|
|
|
|
"""
|
|
Fused Attention
|
|
===============
|
|
|
|
This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf)
|
|
Credits: OpenAI kernel team
|
|
|
|
Extra Credits:
|
|
- Original flash attention paper (https://arxiv.org/abs/2205.14135)
|
|
- Rabe and Staats (https://arxiv.org/pdf/2112.05682v2.pdf)
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
|
|
def is_hip():
|
|
return triton.runtime.driver.active.get_current_target().backend == "hip"
|
|
|
|
|
|
@triton.jit
|
|
def _attn_fwd_inner(
|
|
acc,
|
|
l_i,
|
|
m_i,
|
|
q, #
|
|
K_block_ptr,
|
|
V_block_ptr, #
|
|
start_m,
|
|
qk_scale, #
|
|
BLOCK_M: tl.constexpr,
|
|
HEAD_DIM: tl.constexpr,
|
|
BLOCK_N: tl.constexpr, #
|
|
STAGE: tl.constexpr,
|
|
offs_m: tl.constexpr,
|
|
offs_n: tl.constexpr, #
|
|
N_CTX: tl.constexpr,
|
|
fp8_v: tl.constexpr,
|
|
):
|
|
# range of values handled by this stage
|
|
if STAGE == 1:
|
|
lo, hi = 0, start_m * BLOCK_M
|
|
elif STAGE == 2:
|
|
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
|
|
lo = tl.multiple_of(lo, BLOCK_M)
|
|
# causal = False
|
|
else:
|
|
lo, hi = 0, N_CTX
|
|
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
|
|
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
|
|
# loop over k, v and update accumulator
|
|
for start_n in range(lo, hi, BLOCK_N):
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
# -- compute qk ----
|
|
k = tl.load(K_block_ptr)
|
|
qk = tl.dot(q, k)
|
|
if STAGE == 2:
|
|
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
|
|
qk = qk * qk_scale + tl.where(mask, 0, -1.0e6)
|
|
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
|
qk -= m_ij[:, None]
|
|
else:
|
|
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
|
|
qk = qk * qk_scale - m_ij[:, None]
|
|
p = tl.math.exp2(qk)
|
|
l_ij = tl.sum(p, 1)
|
|
# -- update m_i and l_i
|
|
alpha = tl.math.exp2(m_i - m_ij)
|
|
l_i = l_i * alpha + l_ij
|
|
# -- update output accumulator --
|
|
acc = acc * alpha[:, None]
|
|
# update acc
|
|
v = tl.load(V_block_ptr)
|
|
"""
|
|
if fp8_v:
|
|
p = p.to(tl.float8e5)
|
|
else:
|
|
p = p.to(tl.float16)
|
|
"""
|
|
p = p.to(v.dtype)
|
|
acc = tl.dot(p, v, acc)
|
|
# update m_i and l_i
|
|
m_i = m_ij
|
|
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
|
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
|
return acc, l_i, m_i
|
|
|
|
|
|
# We don't run auto-tuning every time to keep the tutorial fast. Keeping
|
|
# the code below and commenting out the equivalent parameters is convenient for
|
|
# re-tuning.
|
|
configs = [
|
|
triton.Config({"BLOCK_M": BM, "BLOCK_N": BN}, num_stages=s, num_warps=w)
|
|
for BM in [64, 128]
|
|
for BN in [32, 64]
|
|
for s in ([1] if is_hip() else [3, 4, 7])
|
|
for w in [4, 8]
|
|
]
|
|
|
|
|
|
def keep(conf):
|
|
BLOCK_M = conf.kwargs["BLOCK_M"]
|
|
BLOCK_N = conf.kwargs["BLOCK_N"]
|
|
if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8:
|
|
return False
|
|
return True
|
|
|
|
|
|
@triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
|
|
@triton.jit
|
|
def _attn_fwd(
|
|
Q,
|
|
K,
|
|
V,
|
|
sm_scale,
|
|
M,
|
|
Out, #
|
|
stride_qz,
|
|
stride_qh,
|
|
stride_qm,
|
|
stride_qk, #
|
|
stride_kz,
|
|
stride_kh,
|
|
stride_kn,
|
|
stride_kk, #
|
|
stride_vz,
|
|
stride_vh,
|
|
stride_vk,
|
|
stride_vn, #
|
|
stride_oz,
|
|
stride_oh,
|
|
stride_om,
|
|
stride_on, #
|
|
Z,
|
|
H,
|
|
N_CTX, #
|
|
HEAD_DIM: tl.constexpr, #
|
|
BLOCK_M: tl.constexpr, #
|
|
BLOCK_N: tl.constexpr, #
|
|
STAGE: tl.constexpr, #
|
|
):
|
|
tl.static_assert(BLOCK_N <= HEAD_DIM)
|
|
start_m = tl.program_id(0)
|
|
off_hz = tl.program_id(1)
|
|
off_z = off_hz // H
|
|
off_h = off_hz % H
|
|
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
|
|
|
|
# block pointers
|
|
Q_block_ptr = tl.make_block_ptr(
|
|
base=Q + qvk_offset,
|
|
shape=(N_CTX, HEAD_DIM),
|
|
strides=(stride_qm, stride_qk),
|
|
offsets=(start_m * BLOCK_M, 0),
|
|
block_shape=(BLOCK_M, HEAD_DIM),
|
|
order=(1, 0),
|
|
)
|
|
v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0)
|
|
V_block_ptr = tl.make_block_ptr(
|
|
base=V + qvk_offset,
|
|
shape=(N_CTX, HEAD_DIM),
|
|
strides=(stride_vk, stride_vn),
|
|
offsets=(0, 0),
|
|
block_shape=(BLOCK_N, HEAD_DIM),
|
|
order=v_order,
|
|
)
|
|
K_block_ptr = tl.make_block_ptr(
|
|
base=K + qvk_offset,
|
|
shape=(HEAD_DIM, N_CTX),
|
|
strides=(stride_kk, stride_kn),
|
|
offsets=(0, 0),
|
|
block_shape=(HEAD_DIM, BLOCK_N),
|
|
order=(0, 1),
|
|
)
|
|
O_block_ptr = tl.make_block_ptr(
|
|
base=Out + qvk_offset,
|
|
shape=(N_CTX, HEAD_DIM),
|
|
strides=(stride_om, stride_on),
|
|
offsets=(start_m * BLOCK_M, 0),
|
|
block_shape=(BLOCK_M, HEAD_DIM),
|
|
order=(1, 0),
|
|
)
|
|
# initialize offsets
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
# initialize pointer to m and l
|
|
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
|
|
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
|
|
# load scales
|
|
qk_scale = sm_scale
|
|
qk_scale *= 1.44269504 # 1/log(2)
|
|
# load q: it will stay in SRAM throughout
|
|
q = tl.load(Q_block_ptr)
|
|
# stage 1: off-band
|
|
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
|
|
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
|
|
if STAGE & 1:
|
|
acc, l_i, m_i = _attn_fwd_inner(
|
|
acc,
|
|
l_i,
|
|
m_i,
|
|
q,
|
|
K_block_ptr,
|
|
V_block_ptr, #
|
|
start_m,
|
|
qk_scale, #
|
|
BLOCK_M,
|
|
HEAD_DIM,
|
|
BLOCK_N, #
|
|
4 - STAGE,
|
|
offs_m,
|
|
offs_n,
|
|
N_CTX,
|
|
V.dtype.element_ty == tl.float8e5, #
|
|
)
|
|
# stage 2: on-band
|
|
if STAGE & 2:
|
|
# barrier makes it easier for compielr to schedule the
|
|
# two loops independently
|
|
acc, l_i, m_i = _attn_fwd_inner(
|
|
acc,
|
|
l_i,
|
|
m_i,
|
|
q,
|
|
K_block_ptr,
|
|
V_block_ptr, #
|
|
start_m,
|
|
qk_scale, #
|
|
BLOCK_M,
|
|
HEAD_DIM,
|
|
BLOCK_N, #
|
|
2,
|
|
offs_m,
|
|
offs_n,
|
|
N_CTX,
|
|
V.dtype.element_ty == tl.float8e5, #
|
|
)
|
|
# epilogue
|
|
m_i += tl.math.log2(l_i)
|
|
acc = acc / l_i[:, None]
|
|
m_ptrs = M + off_hz * N_CTX + offs_m
|
|
tl.store(m_ptrs, m_i)
|
|
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
|
|
|
|
|
|
@triton.jit
|
|
def _attn_bwd_preprocess(
|
|
O,
|
|
DO, #
|
|
Delta, #
|
|
Z,
|
|
H,
|
|
N_CTX, #
|
|
BLOCK_M: tl.constexpr,
|
|
HEAD_DIM: tl.constexpr, #
|
|
):
|
|
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
off_hz = tl.program_id(1)
|
|
off_n = tl.arange(0, HEAD_DIM)
|
|
# load
|
|
o = tl.load(
|
|
O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
|
)
|
|
do = tl.load(
|
|
DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
|
).to(tl.float32)
|
|
delta = tl.sum(o * do, axis=1)
|
|
# write-back
|
|
tl.store(Delta + off_hz * N_CTX + off_m, delta)
|
|
|
|
|
|
# The main inner-loop logic for computing dK and dV.
|
|
@triton.jit
|
|
def _attn_bwd_dkdv(
|
|
dk,
|
|
dv, #
|
|
Q,
|
|
k,
|
|
v,
|
|
sm_scale, #
|
|
DO, #
|
|
M,
|
|
D, #
|
|
# shared by Q/K/V/DO.
|
|
stride_tok,
|
|
stride_d, #
|
|
H,
|
|
N_CTX,
|
|
BLOCK_M1: tl.constexpr, #
|
|
BLOCK_N1: tl.constexpr, #
|
|
HEAD_DIM: tl.constexpr, #
|
|
# Filled in by the wrapper.
|
|
start_n,
|
|
start_m,
|
|
num_steps, #
|
|
MASK: tl.constexpr,
|
|
):
|
|
offs_m = start_m + tl.arange(0, BLOCK_M1)
|
|
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
|
offs_k = tl.arange(0, HEAD_DIM)
|
|
qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d
|
|
do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
|
# BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
|
|
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
|
|
curr_m = start_m
|
|
step_m = BLOCK_M1
|
|
for blk_idx in range(num_steps):
|
|
qT = tl.load(qT_ptrs)
|
|
# Load m before computing qk to reduce pipeline stall.
|
|
offs_m = curr_m + tl.arange(0, BLOCK_M1)
|
|
m = tl.load(M + offs_m)
|
|
qkT = tl.dot(k, qT)
|
|
pT = tl.math.exp2(qkT - m[None, :])
|
|
# Autoregressive masking.
|
|
if MASK:
|
|
mask = offs_m[None, :] >= offs_n[:, None]
|
|
pT = tl.where(mask, pT, 0.0)
|
|
do = tl.load(do_ptrs)
|
|
# Compute dV.
|
|
ppT = pT
|
|
ppT = ppT.to(do.dtype)
|
|
dv += tl.dot(ppT, do)
|
|
# D (= delta) is pre-divided by ds_scale.
|
|
Di = tl.load(D + offs_m)
|
|
# Compute dP and dS.
|
|
dpT = tl.dot(v, tl.trans(do)).to(tl.float32)
|
|
dsT = pT * (dpT - Di[None, :])
|
|
dsT = dsT.to(qT.dtype)
|
|
dk += tl.dot(dsT, tl.trans(qT))
|
|
# Increment pointers.
|
|
curr_m += step_m
|
|
qT_ptrs += step_m * stride_tok
|
|
do_ptrs += step_m * stride_tok
|
|
return dk, dv
|
|
|
|
|
|
# the main inner-loop logic for computing dQ
|
|
@triton.jit
|
|
def _attn_bwd_dq(
|
|
dq,
|
|
q,
|
|
K,
|
|
V, #
|
|
do,
|
|
m,
|
|
D,
|
|
# shared by Q/K/V/DO.
|
|
stride_tok,
|
|
stride_d, #
|
|
H,
|
|
N_CTX, #
|
|
BLOCK_M2: tl.constexpr, #
|
|
BLOCK_N2: tl.constexpr, #
|
|
HEAD_DIM: tl.constexpr,
|
|
# Filled in by the wrapper.
|
|
start_m,
|
|
start_n,
|
|
num_steps, #
|
|
MASK: tl.constexpr,
|
|
):
|
|
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
|
offs_n = start_n + tl.arange(0, BLOCK_N2)
|
|
offs_k = tl.arange(0, HEAD_DIM)
|
|
kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
|
vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
|
# D (= delta) is pre-divided by ds_scale.
|
|
Di = tl.load(D + offs_m)
|
|
# BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
|
|
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
|
|
curr_n = start_n
|
|
step_n = BLOCK_N2
|
|
for blk_idx in range(num_steps):
|
|
kT = tl.load(kT_ptrs)
|
|
vT = tl.load(vT_ptrs)
|
|
qk = tl.dot(q, kT)
|
|
p = tl.math.exp2(qk - m)
|
|
# Autoregressive masking.
|
|
if MASK:
|
|
offs_n = curr_n + tl.arange(0, BLOCK_N2)
|
|
mask = offs_m[:, None] >= offs_n[None, :]
|
|
p = tl.where(mask, p, 0.0)
|
|
# Compute dP and dS.
|
|
dp = tl.dot(do, vT).to(tl.float32)
|
|
ds = p * (dp - Di[:, None])
|
|
ds = ds.to(kT.dtype)
|
|
# Compute dQ.
|
|
# NOTE: We need to de-scale dq in the end, because kT was pre-scaled.
|
|
dq += tl.dot(ds, tl.trans(kT))
|
|
# Increment pointers.
|
|
curr_n += step_n
|
|
kT_ptrs += step_n * stride_tok
|
|
vT_ptrs += step_n * stride_tok
|
|
return dq
|
|
|
|
|
|
@triton.jit
|
|
def _attn_bwd(
|
|
Q,
|
|
K,
|
|
V,
|
|
sm_scale, #
|
|
DO, #
|
|
DQ,
|
|
DK,
|
|
DV, #
|
|
M,
|
|
D,
|
|
# shared by Q/K/V/DO.
|
|
stride_z,
|
|
stride_h,
|
|
stride_tok,
|
|
stride_d, #
|
|
H,
|
|
N_CTX, #
|
|
BLOCK_M1: tl.constexpr, #
|
|
BLOCK_N1: tl.constexpr, #
|
|
BLOCK_M2: tl.constexpr, #
|
|
BLOCK_N2: tl.constexpr, #
|
|
BLK_SLICE_FACTOR: tl.constexpr, #
|
|
HEAD_DIM: tl.constexpr,
|
|
):
|
|
LN2: tl.constexpr = 0.6931471824645996 # = ln(2)
|
|
|
|
bhid = tl.program_id(2)
|
|
off_chz = (bhid * N_CTX).to(tl.int64)
|
|
adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
|
|
pid = tl.program_id(0)
|
|
|
|
# offset pointers for batch/head
|
|
Q += adj
|
|
K += adj
|
|
V += adj
|
|
DO += adj
|
|
DQ += adj
|
|
DK += adj
|
|
DV += adj
|
|
M += off_chz
|
|
D += off_chz
|
|
|
|
# load scales
|
|
offs_k = tl.arange(0, HEAD_DIM)
|
|
|
|
start_n = pid * BLOCK_N1
|
|
start_m = start_n
|
|
|
|
MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
|
|
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
|
|
|
dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
|
dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
|
|
|
# load K and V: they stay in SRAM throughout the inner loop.
|
|
k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
|
v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
|
|
|
num_steps = BLOCK_N1 // MASK_BLOCK_M1
|
|
|
|
dk, dv = _attn_bwd_dkdv(
|
|
dk,
|
|
dv, #
|
|
Q,
|
|
k,
|
|
v,
|
|
sm_scale, #
|
|
DO, #
|
|
M,
|
|
D, #
|
|
stride_tok,
|
|
stride_d, #
|
|
H,
|
|
N_CTX, #
|
|
MASK_BLOCK_M1,
|
|
BLOCK_N1,
|
|
HEAD_DIM, #
|
|
start_n,
|
|
start_m,
|
|
num_steps, #
|
|
MASK=True, #
|
|
)
|
|
|
|
start_m += num_steps * MASK_BLOCK_M1
|
|
num_steps = (N_CTX - start_m) // BLOCK_M1
|
|
|
|
# Compute dK and dV for non-masked blocks.
|
|
dk, dv = _attn_bwd_dkdv( #
|
|
dk,
|
|
dv, #
|
|
Q,
|
|
k,
|
|
v,
|
|
sm_scale, #
|
|
DO, #
|
|
M,
|
|
D, #
|
|
stride_tok,
|
|
stride_d, #
|
|
H,
|
|
N_CTX, #
|
|
BLOCK_M1,
|
|
BLOCK_N1,
|
|
HEAD_DIM, #
|
|
start_n,
|
|
start_m,
|
|
num_steps, #
|
|
MASK=False, #
|
|
)
|
|
|
|
dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
|
tl.store(dv_ptrs, dv)
|
|
|
|
# Write back dK.
|
|
dk *= sm_scale
|
|
dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
|
tl.store(dk_ptrs, dk)
|
|
|
|
# THIS BLOCK DOES DQ:
|
|
start_m = pid * BLOCK_M2
|
|
end_n = start_m + BLOCK_M2
|
|
|
|
MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
|
|
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
|
|
|
q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
|
dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32)
|
|
do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
|
|
|
m = tl.load(M + offs_m)
|
|
m = m[:, None]
|
|
|
|
# Compute dQ for masked (diagonal) blocks.
|
|
# NOTE: This code scans each row of QK^T backward (from right to left,
|
|
# but inside each call to _attn_bwd_dq, from left to right), but that's
|
|
# not due to anything important. I just wanted to reuse the loop
|
|
# structure for dK & dV above as much as possible.
|
|
num_steps = BLOCK_M2 // MASK_BLOCK_N2
|
|
dq = _attn_bwd_dq(
|
|
dq,
|
|
q,
|
|
K,
|
|
V, #
|
|
do,
|
|
m,
|
|
D, #
|
|
stride_tok,
|
|
stride_d, #
|
|
H,
|
|
N_CTX, #
|
|
BLOCK_M2,
|
|
MASK_BLOCK_N2,
|
|
HEAD_DIM, #
|
|
start_m,
|
|
end_n - num_steps * MASK_BLOCK_N2,
|
|
num_steps, #
|
|
MASK=True, #
|
|
)
|
|
end_n -= num_steps * MASK_BLOCK_N2
|
|
# stage 2
|
|
num_steps = end_n // BLOCK_N2
|
|
dq = _attn_bwd_dq(
|
|
dq,
|
|
q,
|
|
K,
|
|
V, #
|
|
do,
|
|
m,
|
|
D, #
|
|
stride_tok,
|
|
stride_d, #
|
|
H,
|
|
N_CTX, #
|
|
BLOCK_M2,
|
|
BLOCK_N2,
|
|
HEAD_DIM, #
|
|
start_m,
|
|
end_n - num_steps * BLOCK_N2,
|
|
num_steps, #
|
|
MASK=False, #
|
|
)
|
|
# Write back dQ.
|
|
dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
|
dq *= LN2
|
|
tl.store(dq_ptrs, dq)
|
|
|
|
|
|
class _attention(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, q, k, v, causal, sm_scale):
|
|
# shape constraints
|
|
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
|
|
# when v is in float8_e5m2 it is transposed.
|
|
HEAD_DIM_V = v.shape[-1]
|
|
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
|
|
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
|
|
o = torch.empty_like(q)
|
|
stage = 3 if causal else 1
|
|
extra_kern_args = {}
|
|
# Tuning for AMD target
|
|
if is_hip():
|
|
waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2
|
|
extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True}
|
|
|
|
grid = lambda args: (
|
|
triton.cdiv(q.shape[2], args["BLOCK_M"]),
|
|
q.shape[0] * q.shape[1],
|
|
1,
|
|
)
|
|
M = torch.empty(
|
|
(q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32
|
|
)
|
|
_attn_fwd[grid](
|
|
q,
|
|
k,
|
|
v,
|
|
sm_scale,
|
|
M,
|
|
o, #
|
|
q.stride(0),
|
|
q.stride(1),
|
|
q.stride(2),
|
|
q.stride(3), #
|
|
k.stride(0),
|
|
k.stride(1),
|
|
k.stride(2),
|
|
k.stride(3), #
|
|
v.stride(0),
|
|
v.stride(1),
|
|
v.stride(2),
|
|
v.stride(3), #
|
|
o.stride(0),
|
|
o.stride(1),
|
|
o.stride(2),
|
|
o.stride(3), #
|
|
q.shape[0],
|
|
q.shape[1], #
|
|
N_CTX=q.shape[2], #
|
|
HEAD_DIM=HEAD_DIM_K, #
|
|
STAGE=stage, #
|
|
**extra_kern_args,
|
|
)
|
|
|
|
ctx.save_for_backward(q, k, v, o, M)
|
|
ctx.grid = grid
|
|
ctx.sm_scale = sm_scale
|
|
ctx.HEAD_DIM = HEAD_DIM_K
|
|
ctx.causal = causal
|
|
return o
|
|
|
|
@staticmethod
|
|
def backward(ctx, do):
|
|
q, k, v, o, M = ctx.saved_tensors
|
|
#assert do.is_contiguous()
|
|
#assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
|
|
dq = torch.empty_like(q)
|
|
dk = torch.empty_like(k)
|
|
dv = torch.empty_like(v)
|
|
BATCH, N_HEAD, N_CTX = q.shape[:3]
|
|
PRE_BLOCK = 128
|
|
NUM_WARPS, NUM_STAGES = 4, 5
|
|
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32
|
|
BLK_SLICE_FACTOR = 2
|
|
RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2)
|
|
arg_k = k
|
|
arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
|
|
PRE_BLOCK = 128
|
|
assert N_CTX % PRE_BLOCK == 0
|
|
pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
|
|
delta = torch.empty_like(M)
|
|
_attn_bwd_preprocess[pre_grid](
|
|
o,
|
|
do, #
|
|
delta, #
|
|
BATCH,
|
|
N_HEAD,
|
|
N_CTX, #
|
|
BLOCK_M=PRE_BLOCK,
|
|
HEAD_DIM=ctx.HEAD_DIM, #
|
|
)
|
|
grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD)
|
|
_attn_bwd[grid](
|
|
q,
|
|
arg_k,
|
|
v,
|
|
ctx.sm_scale,
|
|
do,
|
|
dq,
|
|
dk,
|
|
dv, #
|
|
M,
|
|
delta, #
|
|
q.stride(0),
|
|
q.stride(1),
|
|
q.stride(2),
|
|
q.stride(3), #
|
|
N_HEAD,
|
|
N_CTX, #
|
|
BLOCK_M1=BLOCK_M1,
|
|
BLOCK_N1=BLOCK_N1, #
|
|
BLOCK_M2=BLOCK_M2,
|
|
BLOCK_N2=BLOCK_N2, #
|
|
BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, #
|
|
HEAD_DIM=ctx.HEAD_DIM, #
|
|
num_warps=NUM_WARPS, #
|
|
num_stages=NUM_STAGES, #
|
|
)
|
|
|
|
return dq, dk, dv, None, None
|
|
|
|
|
|
attention = _attention.apply |