vall-e/vall_e/models/__init__.py

114 lines
3.0 KiB
Python
Executable File

import logging
import requests
from tqdm import tqdm
from pathlib import Path
_logger = logging.getLogger(__name__)
# to-do: implement automatically downloading model
DEFAULT_MODEL_PATH = Path(__file__).parent.parent.parent / 'data/models'
DEFAULT_MODEL_URLS = {
'ar+nar-llama-8/fp32.sft': 'https://huggingface.co/ecker/vall-e/resolve/main/models/ckpt/ar%2Bnar-llama-8/fp32.sft',
}
# kludge, probably better to use HF's model downloader function
# to-do: write to a temp file then copy so downloads can be interrupted
def download_model( save_path, chunkSize = 1024, unit = "MiB" ):
scale = 1
if unit == "KiB":
scale = (1024)
elif unit == "MiB":
scale = (1024 * 1024)
elif unit == "MiB":
scale = (1024 * 1024 * 1024)
elif unit == "KB":
scale = (1000)
elif unit == "MB":
scale = (1000 * 1000)
elif unit == "MB":
scale = (1000 * 1000 * 1000)
name = save_path.name
url = DEFAULT_MODEL_URLS[name] if name in DEFAULT_MODEL_URLS else None
if url is None:
raise Exception(f'Model requested for download but not defined: {name}')
if not save_path.parent.exists():
save_path.parent.mkdir(parents=True, exist_ok=True)
r = requests.get(url, stream=True)
content_length = int(r.headers['Content-Length'] if 'Content-Length' in r.headers else r.headers['content-length']) // scale
with open(save_path, 'wb') as f:
bar = tqdm( unit=unit, total=content_length )
for chunk in r.iter_content(chunk_size=chunkSize):
if not chunk:
continue
bar.update( len(chunk) / scale )
f.write(chunk)
bar.close()
def get_model(config, training=True, **model_kwargs):
name = config.name
if "len" in config.capabilities:
from .nar import NAR
model = NAR(
n_text_tokens=config.text_tokens,
n_audio_tokens=config.audio_tokens,
d_model=config.dim,
n_heads=config.heads,
n_layers=config.layers,
n_experts=config.experts,
p_dropout=config.dropout,
l_padding = config.input_alignment,
training = training,
config = config,
**model_kwargs
)
elif config.experimental.hf:
from .experimental import Model as Experimental
model = Experimental(
n_text_tokens=config.text_tokens,
n_audio_tokens=config.audio_tokens,
d_model=config.dim,
n_layers=config.layers,
n_heads=config.heads,
p_dropout=config.dropout,
config = config,
**model_kwargs
)
else:
from .ar_nar import AR_NAR
model = AR_NAR(
n_text_tokens=config.text_tokens,
n_audio_tokens=config.audio_tokens,
d_model=config.dim,
n_heads=config.heads,
n_layers=config.layers,
n_experts=config.experts,
p_dropout=config.dropout,
l_padding = config.input_alignment,
training = training,
config = config,
**model_kwargs
)
_logger.info(f"{name} ({next(model.parameters()).dtype}): {sum(p.numel() for p in model.parameters() if p.requires_grad)} parameters")
return model
def get_models(models, training=True, **model_kwargs):
return { model.full_name: get_model(model, training=training, **model_kwargs) for model in models }