196 lines
7.7 KiB
Python
196 lines
7.7 KiB
Python
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
|
|
|
import torch
|
|
from typing import Literal, overload, Optional, Tuple
|
|
|
|
from torch import Tensor, nn
|
|
from transformers.cache_utils import Cache
|
|
|
|
from transformers import LlamaModel, LlamaConfig, LlamaForCausalLM
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
|
|
|
|
AVAILABLE_ATTENTIONS = ["sdpa"]
|
|
|
|
if torch.backends.cuda.flash_sdp_enabled():
|
|
AVAILABLE_ATTENTIONS.append("flash")
|
|
|
|
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
|
AVAILABLE_ATTENTIONS.append("mem_efficient")
|
|
|
|
if torch.backends.cuda.math_sdp_enabled():
|
|
AVAILABLE_ATTENTIONS.append("math")
|
|
|
|
try:
|
|
from xformers.ops import LowerTriangularMask
|
|
from xformers.ops.fmha import memory_efficient_attention
|
|
|
|
AVAILABLE_ATTENTIONS.append("xformers")
|
|
except Exception as e:
|
|
print("Error while importing `xformers`", e)
|
|
|
|
try:
|
|
from transformers.utils import is_flash_attn_2_available
|
|
|
|
if is_flash_attn_2_available():
|
|
AVAILABLE_ATTENTIONS.append("flash_attention_2")
|
|
except Exception as e:
|
|
print("Error while querying for `flash_attn_2` support", e)
|
|
|
|
class LlamaAttention_Adapted(LlamaAttention):
|
|
def __init__(self, *args, **kwargs):
|
|
if 'mode' in kwargs:
|
|
self.mode = kwargs['mode']
|
|
kwargs.pop("mode")
|
|
else:
|
|
self.mode = "math"
|
|
|
|
if self.mode == "math":
|
|
self.mode = torch.nn.attention.SDPBackend.MATH
|
|
elif self.mode == "mem_efficient":
|
|
self.mode = torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION
|
|
elif self.mode == "flash":
|
|
self.mode = torch.nn.attention.SDPBackend.FLASH_ATTENTION
|
|
elif self.mode == "cudnn":
|
|
self.mode = torch.nn.attention.SDPBackend.CUDNN_ATTENTION
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# Adapted from LlamaAttention.forward
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if output_attentions:
|
|
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
return super().forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
if position_embeddings is None:
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
causal_mask = attention_mask
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
|
|
|
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
|
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
|
if query_states.device.type == "cuda" and causal_mask is not None:
|
|
query_states = query_states.contiguous()
|
|
key_states = key_states.contiguous()
|
|
value_states = value_states.contiguous()
|
|
|
|
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
|
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
|
is_causal = True if causal_mask is None and q_len > 1 else False
|
|
|
|
#with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"):
|
|
with torch.nn.attention.sdpa_kernel(self.mode):
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_mask=causal_mask,
|
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
is_causal=is_causal,
|
|
)
|
|
|
|
print("attention")
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.view(bsz, q_len, -1)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
"""
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
|
|
|
if past_key_value is not None:
|
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
|
|
if self.mode == "xformers":
|
|
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
|
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=None, p=dropout_rate)
|
|
else:
|
|
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=LowerTriangularMask(), p=dropout_rate)
|
|
else:
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"):
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=dropout_rate)
|
|
|
|
attn_weights = None
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
""" |