vall-e/vall_e/engines/__init__.py

377 lines
13 KiB
Python
Executable File

from ..config import cfg
from ..utils.distributed import fix_unset_envs, ddp_model, world_size
fix_unset_envs()
if cfg.trainer.backend == "deepspeed":
from .deepspeed import Engine
elif cfg.trainer.backend == "local":
from .base import Engine
from .base import Engines, TrainFeeder, default_feeder, Engine as LocalEngine
from ..models import get_models, get_model
from ..utils import wrapper as ml
from ..utils.io import torch_save, torch_load, pick_path
from ..models.lora import apply_lora, lora_load_state_dict
import torch
import re
import logging
_logger = logging.getLogger(__name__)
deepspeed_available = False
try:
import deepspeed
deepspeed_available = True
except Exception as e:
pass
try:
import wandb
except Exception as e:
_logger.warning(f'Failed to import wandb: {str(e)}')
wandb = None
from functools import cache
@cache
def load_engines(training=True, **model_kwargs):
models = get_models(cfg.models, training=training, **model_kwargs)
engines = dict()
for name, model in models.items():
state = None
stats = None
lora = None
inferencing = cfg.mode == "inferencing" or not model.config.training or not training or model.config.teacher
backend = cfg.inference.backend if inferencing else cfg.trainer.backend
loads_state_dict = cfg.trainer.load_state_dict # or inferencing
checkpoint_path = cfg.ckpt_dir / name / "latest"
# automatically load from state dict if one is provided, but no DeepSpeed checkpoint is present
load_path = pick_path( cfg.ckpt_dir / name / f"{cfg.weights_name}.{cfg.weights_format}", *[ f'.{format}' for format in cfg.supported_weights_formats] )
# actually use the lora-specific checkpoint if available
if cfg.lora is not None:
checkpoint_path = cfg.ckpt_dir / cfg.lora.full_name / "latest"
# to handle the issue of training with deepspeed, but inferencing with local
if checkpoint_path.exists() and backend == "local":
tag = open(checkpoint_path).read()
checkpoint_path = pick_path( checkpoint_path.parent / tag / f"state.{cfg.weights_format}", *[ f'.{format}' for format in cfg.supported_weights_formats] )
# if loaded using --model=
if model.config.path and model.config.path.exists():
load_path = model.config.path
if not loads_state_dict and not checkpoint_path.exists() and load_path.exists():
_logger.warning(f"Checkpoint missing, but weights found: {load_path}")
loads_state_dict = True
# load state early
if loads_state_dict:
state = torch_load(load_path, device=cfg.device)
# check if config is defined in state, and re-initialize the model
if "config" in state and False:
_logger.warning("Model config definition in weights, re-loading...")
config_state = state["config"]
model = get_model( config=cfg.model.__class__( *config_state ), training=training )
hyper_config = model.config
optimizer = None
lr_scheduler = None
dtype = cfg.inference.dtype if inferencing else cfg.trainer.dtype
amp = cfg.inference.amp if inferencing else cfg.trainer.amp
ddp = cfg.trainer.ddp
engine_class = LocalEngine if backend == "local" else Engine
# apply model replacers
if cfg.optimizations.replace and cfg.optimizations.linear:
model.model = ml.replace_linear( model.model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model.model = ml.replace_embedding( model.model )
for lora in cfg.loras:
model.model = apply_lora( model.model, rank = lora.rank, alpha = lora.alpha, policy = model.config.lora_policy, use_parametrize = lora.parametrize )
if inferencing:
model.config.training = False
if not inferencing and (backend == "local" or (backend == "deepspeed" and cfg.hyperparameters.torch_optimizer)):
optimizer_class = None
scheduler_class = None
params = {
"params": [ param for name, param in model.named_parameters() if name not in model.config.frozen_params ],
"lr": cfg.hyperparameters.learning_rate,
}
if cfg.hyperparameters.optimizer.lower() == "adamw":
params["betas"] = (0.9, 0.96)
params["eps"] = 1e-07
params["weight_decay"] = 0.01
# for dadaptation since it has Adam only
if ml.AdamW == ml.Adam:
params["decouple"] = True
optimizer_class = ml.AdamW
elif cfg.hyperparameters.optimizer.lower() == "sgd":
optimizer = ml.SGD
elif cfg.hyperparameters.optimizer.lower() == "prodigy":
optimizer_class = ml.Prodigy
params['d_coef'] = params['lr']
params['lr'] = 1.0
elif cfg.hyperparameters.optimizer.lower() in ["apollo","apollo-mini"]:
optimizer_class = ml.Apollo
is_mini = cfg.hyperparameters.optimizer.lower() == "apollo-mini"
params.update({
"rank": 1 if is_mini else 256,
"proj": "random",
"scale_type": "tensor" if is_mini else "channel",
"scale": 128 if is_mini else 1,
"update_proj_gap": 1,
"proj_type": "std",
})
elif cfg.hyperparameters.optimizer.lower() == "adagrad":
optimizer_class = ml.Adagrad
else:
raise ValueError(f'Optimizer specified not implemented: {cfg.hyperparameters.optimizer}')
params.update(cfg.hyperparameters.optimizer_params)
optimizer = optimizer_class(**params)
if cfg.hyperparameters.scheduler.lower() == "schedulefree":
if cfg.hyperparameters.optimizer.lower() == "adamw":
scheduler_class = ml.schedulefree.AdamWScheduleFree
elif cfg.hyperparameters.optimizer.lower() == "sgd":
scheduler_class = ml.schedulefree.SGDScheduleFree
else:
raise ValueError(f'ScheduleFree not implemented with requested optimizer: {cfg.hyperparameters.optimizer}')
optimizer = scheduler_class(
[ param for name, param in model.named_parameters() if name not in model.config.frozen_params ],
lr = params['lr'],
warmup_steps = cfg.hyperparameters.warmup_steps
)
"""
# set up our LR scheduler here
"""
if inferencing:
optimizer = None
lr_scheduler = None
# load state dict if requested / required
if loads_state_dict:
# state dict is not just the module, extract the extra trainer details
if "stats" in state:
stats = state["stats"]
# do not load stats if we're training a LoRA
if cfg.lora is not None or cfg.trainer.restart_step_count:
stats = None
if "module" in state:
state = state["module"]
# maintain compat if I change variable names
insert = {}
erase = []
for k in state.keys():
key = re.sub(r'^retnet\.', "model.", k)
if k != key:
insert[key] = state[k]
erase.append(k)
for k in insert.keys():
state[k] = insert[k]
for k in erase:
del state[k]
# converts an AR+NAR model into an AR+NAR-len model
"""
if True:
# move STT one over
state['classifiers.proj.9.weight'] = state['classifiers.proj.8.weight'].clone()
state['classifiers.proj.9.bias'] = state['classifiers.proj.8.bias'].clone()
# copy from AR:0:0 classifier
if True:
state['classifiers.proj.8.weight'] = state['classifiers.proj.0.weight'].clone()
state['classifiers.proj.8.bias'] = state['classifiers.proj.0.bias'].clone()
# copy from AR:0:0 embeddings
state['resps_emb.embeddings.8.weight'] = state['resps_emb.embeddings.0.weight'].clone()
# remove
else:
if 'classifiers.proj.8.weight' in state:
del state['classifiers.proj.8.weight']
if 'classifiers.proj.8.bias' in state:
del state['classifiers.proj.8.bias']
if 'resps_emb.embeddings.8.weight' in state:
del state['resps_emb.embeddings.8.weight']
"""
# resize modules if I'm doing experiments and can't be assed to manually trim things
if cfg.trainer.resize_modules:
uses_stop_token = 1 if ("ar" in model.capabilities or "len" in model.capabilities) > 0 else 0
keys = [
("text_emb.weight", model.config.text_tokens ),
("tasks_emb.weight", model.config.tasks ),
("langs_emb.weight", model.config.langs ),
("rvq_l_emb.weight", model.config.resp_levels ),
("resps_emb.embeddings.0.weight", model.config.audio_tokens + uses_stop_token ),
("model.embed_tokens.weight", model.config.audio_tokens + uses_stop_token ),
("classifiers.proj.0.weight", model.config.audio_tokens + uses_stop_token ),
("classifiers.proj.0.bias", model.config.audio_tokens + uses_stop_token ),
("classifier.weight", model.n_vocab ),
("classifier.bias", model.n_vocab ),
]
# correcting an oversight
if model.config.experimental.split_classifiers and "len" in model.capabilities:
len_idx, nar_0_idx = model.classifiers.indices(["len", "NAR:0:0"])
keys.append((f"classifiers.proj.{len_idx}.weight", 11))
keys.append((f"classifiers.proj.{len_idx}.bias", 11))
keys.append((f"classifiers.proj.{nar_0_idx}.weight", 1024))
keys.append((f"classifiers.proj.{nar_0_idx}.bias", 1024))
for k, tokens in keys:
if k not in state:
continue
state[k] = ml.resize_weight( state[k], tokens )
# stuff to inject new layers into an existing model train over (not recommended, it doesnt amount to anything)
"""
if True:
remapped_dict = {}
remapped_indices = [
(0, 1),
(1, 2),
(2, 3),
(3, 5),
(4, 6),
(5, 7),
(6, 9),
(7, 10),
(8, 11),
(9, 13),
(10, 14),
(11, 15),
]
for src, dst in remapped_indices:
remapped_dict[f"model.layers.{dst}.input_layernorm.weight"] = state[f"model.layers.{src}.input_layernorm.weight"]
remapped_dict[f"model.layers.{dst}.self_attn.k_proj.weight"] = state[f"model.layers.{src}.self_attn.k_proj.weight"]
remapped_dict[f"model.layers.{dst}.self_attn.q_proj.weight"] = state[f"model.layers.{src}.self_attn.q_proj.weight"]
remapped_dict[f"model.layers.{dst}.self_attn.v_proj.weight"] = state[f"model.layers.{src}.self_attn.v_proj.weight"]
remapped_dict[f"model.layers.{dst}.self_attn.o_proj.weight"] = state[f"model.layers.{src}.self_attn.o_proj.weight"]
remapped_dict[f"model.layers.{dst}.post_attention_layernorm.weight"] = state[f"model.layers.{src}.post_attention_layernorm.weight"]
remapped_dict[f"model.layers.{dst}.mlp.down_proj.weight"] = state[f"model.layers.{src}.mlp.down_proj.weight"]
remapped_dict[f"model.layers.{dst}.mlp.gate_proj.weight"] = state[f"model.layers.{src}.mlp.gate_proj.weight"]
remapped_dict[f"model.layers.{dst}.mlp.up_proj.weight"] = state[f"model.layers.{src}.mlp.up_proj.weight"]
del state[f"model.layers.{src}.input_layernorm.weight"]
del state[f"model.layers.{src}.self_attn.k_proj.weight"]
del state[f"model.layers.{src}.self_attn.q_proj.weight"]
del state[f"model.layers.{src}.self_attn.v_proj.weight"]
del state[f"model.layers.{src}.self_attn.o_proj.weight"]
del state[f"model.layers.{src}.post_attention_layernorm.weight"]
del state[f"model.layers.{src}.mlp.down_proj.weight"]
del state[f"model.layers.{src}.mlp.gate_proj.weight"]
del state[f"model.layers.{src}.mlp.up_proj.weight"]
for k, v in remapped_dict.items():
state[k] = v
"""
model.load_state_dict(state, strict=cfg.trainer.strict_loading)
# load lora weights if exists
if cfg.lora is not None:
if cfg.lora.path:
lora_path = cfg.lora.path
else:
lora_path = pick_path( cfg.ckpt_dir / cfg.lora.full_name / f"lora.{cfg.weights_format}", *[ f'.{format}' for format in cfg.supported_weights_formats] )
if lora_path.exists():
_logger.info( f"Loaded LoRA state dict: {lora_path}" )
state = torch_load(lora_path, device=cfg.device)
state = state['lora' if 'lora' in state else 'module']
lora_load_state_dict( model, state )
# wrap if DDP is requested
if ddp:
model = ddp_model(model)
# wrap optimization class
elif cfg.optimizations.compile:
model = ml.compile_model(model, backend=cfg.optimizations.compile)
# deepspeed inferencing
elif backend == "local" and inferencing and deepspeed_available and cfg.trainer.deepspeed.inferencing: #and sys.platform.startswith("win"):
engine_class = LocalEngine
model = deepspeed.init_inference(model=model, mp_size=1, replace_with_kernel_inject=True, dtype=dtype if not amp else torch.float32).module
# use base engine if requested
engines[name] = engine_class(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
hyper_config=hyper_config,
stats=stats
)
engines = Engines(engines)
engines.setup()
# this might bite me in the ass since technically this doesn't handle one engine loading fine but another engine not
if not cfg.trainer.load_state_dict:
engines.load_checkpoint(training=not inferencing)
# freeze requested params
for name, engine in engines.items():
engine.freeze(freeze_all=False)
# split models over requested devices
if cfg.optimizations.model_offloading:
engine.module = ml.offload_model( engine.module, policy=cfg.optimizations.model_offloading )
# set to train/eval
if engine.hyper_config.training:
engine.module.train()
else:
engine.module.eval()
# setup wandb
if engine._training and cfg.trainer.wandb and wandb is not None:
key_name = name
kwargs = {}
if cfg.lora is not None:
key_name = cfg.lora.full_name
if world_size() > 1:
kwargs["group"] = "DDP"
engine.wandb = wandb.init(project=key_name, **kwargs)
engine.wandb.watch(engine.module)
else:
engine.wandb = None
return engines