vall-e/vall_e/webui.py

653 lines
33 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
import os
argv = os.environ.get('VALLE_ARGS', None)
if argv:
sys.argv = sys.argv + argv.split(" ")
import re
import math
import argparse
import random
import tempfile
import functools
import torch
import numpy as np
import torchaudio
import gradio as gr
from pathlib import Path
# agony with HF's ZeroGPU spaces
try:
import spaces
USING_SPACES = True
spaces_zerogpu_decorator = spaces.GPU
except Exception as e:
USING_SPACES = False
def spaces_zerogpu_decorator(func):
return func
# more agony, because gradio will not stay launched if directly called from the package, for who knows why
# this allows me to directly copy this file rather than constantly edit it on the HF space repo
if USING_SPACES:
from vall_e.inference import TTS, cfg
from vall_e.train import train
from vall_e.utils import get_devices, setup_logging, timer
from vall_e.utils.io import json_read, json_stringify
from vall_e.emb.qnt import decode_to_wave
from vall_e.data import get_lang_symmap, get_random_prompt
from vall_e.models.arch import AVAILABLE_ATTENTIONS
from vall_e.emb.transcribe import transcribe
else:
from .inference import TTS, cfg
from .train import train
from .utils import get_devices, setup_logging, timer
from .utils.io import json_read, json_stringify
from .emb.qnt import decode_to_wave
from .data import get_lang_symmap, get_random_prompt
from .models.arch import AVAILABLE_ATTENTIONS
from .emb.transcribe import transcribe
is_windows = sys.platform.startswith("win")
tts = None
layout = {}
layout["inference_tts"] = {}
layout["inference_stt"] = {}
layout["training"] = {}
layout["dataset"] = {}
layout["settings"] = {}
for k in layout.keys():
layout[k]["inputs"] = { "progress": None }
layout[k]["outputs"] = {}
layout[k]["buttons"] = {}
# there's got to be a better way to go about this
def gradio_wrapper(inputs):
def decorated(fun):
@functools.wraps(fun)
def wrapped_function(*args, **kwargs):
for i, key in enumerate(inputs):
kwargs[key] = args[i]
try:
return fun(**kwargs)
except Exception as e:
raise gr.Error(str(e))
return wrapped_function
return decorated
# returns a list of models, assuming the models are placed under ./training/ or ./models/ or ./data/models/
def get_model_paths( paths=[Path("./training/"), Path("./models/"), Path("./data/models/")] ):
configs = []
for path in paths:
if not path.exists():
continue
for yaml in path.glob("**/*.yaml"):
if "/logs/" in str(yaml):
continue
configs.append( yaml )
for sft in path.glob("**/*.sft"):
if "/logs/" in str(sft):
continue
configs.append( sft )
configs = [ str(p) for p in configs ]
return configs
def get_dtypes():
return ["float32", "float16", "bfloat16", "float8_e5m2", "float8_e4m3fn", "auto"]
def get_attentions():
return AVAILABLE_ATTENTIONS + ["auto"]
#@gradio_wrapper(inputs=layout["settings"]["inputs"].keys())
def load_model( config, device, dtype, attention ):
gr.Info(f"Loading: {config}")
try:
init_tts( config=Path(config), restart=True, device=device, dtype=dtype, attention=attention )
except Exception as e:
raise gr.Error(e)
gr.Info(f"Loaded model")
def get_speakers():
return cfg.dataset.training
def get_languages():
return list(get_lang_symmap().keys()) + ["auto"]
def get_tasks():
return ["tts", "sr", "ns", "vc"]
#@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys())
def load_sample( speaker ):
metadata_path = cfg.metadata_dir / f'{speaker}.json'
metadata = json_read( metadata_path )
if not metadata:
raise gr.Error(f"Metadata not found: {metadata_path}")
key = random.choice( list(metadata.keys()) )
path = cfg.data_dir / speaker / f'{key}.enc' # to-do: get proper file extension
data = json_stringify( metadata[key], pretty=True )
wav, sr = None, None
if path.exists():
artifact = np.load(path, allow_pickle=True)[()]
codes = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=cfg.device)
wav, sr = decode_to_wave( codes )
wav = wav.squeeze(0).cpu().numpy()
return data, (sr, wav)
def gradio_transcribe_input( audio, text, split_by ):
if not audio:
return ( text, split_by )
return ( transcribe( audio, model_name="openai/whisper-base", align=False )["text"], "lines" )
def init_tts(config=None, lora=None, restart=False, device="cuda", dtype="auto", attention=None):
global tts
if tts is not None:
if not restart:
return tts
del tts
tts = None
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--device", type=str, default=device)
parser.add_argument("--amp", action="store_true")
parser.add_argument("--dtype", type=str, default=dtype)
parser.add_argument("--attention", type=str, default=attention)
args, unknown = parser.parse_known_args()
if config:
if config.suffix == ".yaml" and not args.yaml:
args.yaml = config
elif config.suffix == ".sft" and not args.model:
args.model = config
if lora and not args.lora:
args.lora = lora
if args.yaml:
config = args.yaml
elif args.model:
config = args.model
if args.lora:
lora = args.lora
tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype if args.dtype != "auto" else None, amp=args.amp, attention=args.attention )
return tts
@spaces_zerogpu_decorator
@gradio_wrapper(inputs=layout["inference_tts"]["inputs"].keys())
def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
if not cfg.models:
raise Exception("No model loaded.")
if kwargs.pop("dynamic-sampling", False):
kwargs['min-ar-temperature'] = 0.01 if kwargs['ar-temperature'] > 0.01 else 0.0
kwargs['min-nar-temperature'] = 0.0 # 0.85 if kwargs['nar-temperature'] > 0.85 else 0.0 # should probably disable it for the NAR
else:
kwargs['min-ar-temperature'] = -1
kwargs['min-nar-temperature'] = -1
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
# I'm very sure I can procedurally generate this list
parser.add_argument("--text", type=str, default=kwargs["text"])
parser.add_argument("--task", type=str, default=kwargs["task"])
parser.add_argument("--modality", type=str, default=kwargs["modality"])
parser.add_argument("--references", type=str, default=kwargs["reference"])
parser.add_argument("--voice-convert", type=str, default=kwargs["voice-convert"])
parser.add_argument("--language", type=str, default=kwargs["language"])
parser.add_argument("--text-language", type=str, default=kwargs["text-language"])
parser.add_argument("--no-phonemize", action="store_true")
parser.add_argument("--play", action="store_true")
parser.add_argument("--split-text-by", type=str, default=kwargs["split-text-by"])
parser.add_argument("--context-history", type=int, default=kwargs["context-history"])
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"])
parser.add_argument("--max-duration", type=int, default=int(kwargs["max-duration"]*cfg.dataset.frames_per_second))
parser.add_argument("--max-levels", type=int, default=kwargs["max-levels"])
parser.add_argument("--max-steps", type=int, default=kwargs["max-steps"])
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"])
parser.add_argument("--nar-temperature", type=float, default=kwargs["nar-temperature"])
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"])
parser.add_argument("--min-nar-temperature", type=float, default=kwargs["min-nar-temperature"])
parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"])
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
parser.add_argument("--top-no", type=float, default=kwargs["top-no"])
parser.add_argument("--min-p", type=float, default=kwargs["min-p"])
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"])
parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"])
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
parser.add_argument("--entropix-sampling", action="store_true")
parser.add_argument("--layer-skip", action="store_true")
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"])
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"])
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"])
parser.add_argument("--refine-on-stop", action="store_true")
parser.add_argument("--denoise-start", type=float, default=0.0)
parser.add_argument("--cfg-strength", type=float, default=kwargs['cfg-strength'])
parser.add_argument("--cfg-rescale", type=float, default=kwargs['cfg-rescale'])
args, unknown = parser.parse_known_args()
if is_windows:
tmp = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
else:
tmp = tempfile.NamedTemporaryFile(suffix='.wav')
"""
if not args.references:
raise Exception("No reference audio provided.")
"""
if kwargs.pop("entropix-sampling", False):
args.entropix_sampling = True
if kwargs.pop("layer-skip", False):
args.layer_skip = True
if kwargs.pop("refine-on-stop", False):
args.refine_on_stop = True
if kwargs.pop("no-phonemize", False):
args.no_phonemize = True
if kwargs.pop("play", False):
args.play = True
if args.split_text_by == "lines":
args.split_text_by = "\n"
elif args.split_text_by == "none":
args.split_text_by = None
if args.text_language == "auto":
args.text_language = None
tts = init_tts()
gr.Info(f"Inferencing... (Modality: {tts.modality(args.modality.lower())})")
sampling_kwargs = dict(
split_text_by=args.split_text_by,
context_history=args.context_history,
phonemize=not args.no_phonemize,
voice_convert=args.voice_convert,
max_steps=args.max_steps,
max_levels=args.max_levels,
max_duration=args.max_duration,
ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature,
min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature,
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, top_no=args.top_no,
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
beam_width=args.beam_width,
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length,
entropix_sampling=args.entropix_sampling,
layer_skip=args.layer_skip,
layer_skip_exit_layer=args.layer_skip_exit_layer,
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
refine_on_stop=args.refine_on_stop,
denoise_start=args.denoise_start,
prefix_silence=args.prefix_silence,
input_prompt_prefix=args.input_prompt_prefix,
input_prompt_length=args.input_prompt_length,
cfg_strength=args.cfg_strength,
cfg_rescale=args.cfg_rescale,
)
with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t:
wav, sr = tts.inference(
text=args.text,
language=args.language,
text_language=args.text_language,
task=args.task,
play=args.play,
modality=args.modality.lower(),
references=args.references.split(";") if args.references is not None else [],
**sampling_kwargs,
)
wav = wav.squeeze(0).cpu().numpy()
return (sr, wav)
@gradio_wrapper(inputs=layout["inference_stt"]["inputs"].keys())
def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
if not cfg.models:
raise Exception("No model loaded.")
if kwargs.pop("dynamic-sampling", False):
kwargs['min-ar-temperature'] = 0.85 if kwargs['ar-temperature'] > 0.85 else 0.0
else:
kwargs['min-ar-temperature'] = -1
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
# I'm very sure I can procedurally generate this list
parser.add_argument("--task", type=str, default="stt")
parser.add_argument("--references", type=str, default=kwargs["reference"])
parser.add_argument("--max-duration", type=int, default=0)
parser.add_argument("--language", type=str, default=kwargs["language"])
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"])
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"])
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
parser.add_argument("--min-p", type=float, default=kwargs["min-p"])
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"])
parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"])
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
args, unknown = parser.parse_known_args()
"""
if not args.references:
raise Exception("No reference audio provided.")
"""
args.references = args.references.split(";") if args.references is not None else []
if args.max_duration == 0:
for i, path in enumerate( args.references ):
metadata = torchaudio.info(path)
duration = metadata.num_frames / metadata.sample_rate
args.max_duration += duration
args.max_duration = math.floor( args.max_duration * 20 ) # assume 20 tokens per second
if kwargs.pop("entropix-sampling", False):
args.entropix_sampling = True
tts = init_tts()
sampling_kwargs = dict(
max_duration=args.max_duration,
ar_temperature=args.ar_temperature,
min_ar_temperature=args.min_ar_temperature,
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p,
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
beam_width=args.beam_width,
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length,
)
gr.Info("Inferencing...")
with timer("Inferenced in") as t:
text = tts.inference(
text="",
language=args.language,
task="stt",
references=args.references,
**sampling_kwargs,
)
return text
"""
@gradio_wrapper(inputs=layout["training"]["inputs"].keys())
def do_training( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
while True:
metrics = next(it)
yield metrics
"""
# setup args
parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--listen", default=None, help="Path for Gradio to listen on")
parser.add_argument("--share", action="store_true")
parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ)
args, unknown = parser.parse_known_args()
args.listen_host = None
args.listen_port = None
args.listen_path = None
if args.listen:
try:
match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0]
args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
args.listen_port = match[1] if match[1] != "" else None
args.listen_path = match[2] if match[2] != "" else "/"
except Exception as e:
pass
if args.listen_port is not None:
args.listen_port = int(args.listen_port)
if args.listen_port == 0:
args.listen_port = None
# setup gradio
ui = gr.Blocks()
with ui:
with gr.Tab("Inference"):
with gr.Tab("Text-to-Speech"):
with gr.Row():
with gr.Column(scale=8):
with gr.Tab("Text"):
layout["inference_tts"]["inputs"]["text"] = gr.Textbox(lines=5, value=get_random_prompt, label="Input Prompt")
with gr.Tab("Speech"):
layout["inference_tts"]["inputs"]["voice-convert"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") # , info="Guiding utternace.")
with gr.Row():
with gr.Column(scale=1):
layout["inference_tts"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") # , info="Reference audio for TTS")
# layout["inference_tts"]["stop"] = gr.Button(value="Stop")
layout["inference_tts"]["outputs"]["output"] = gr.Audio(label="Output")
layout["inference_tts"]["buttons"]["inference"] = gr.Button(value="Inference")
with gr.Column(scale=7):
with gr.Tab("Basic Settings"):
with gr.Row():
layout["inference_tts"]["inputs"]["max-steps"] = gr.Slider(value=50, minimum=1, maximum=200, step=1, label="Max Steps", info="Limits how many steps to perform in the NAR-len (demask) pass.")
layout["inference_tts"]["inputs"]["max-duration"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Duration", info="Limits how long an utterance can be.")
layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=0.0, minimum=0.0, maximum=12.0, step=0.5, label="Input Prompt Repeat/Trim Length", info="Repeats/trims the input prompt down to X seconds (0 to disable).")
with gr.Row():
layout["inference_tts"]["inputs"]["text-language"] = gr.Dropdown(choices=get_languages(), label="Language (Text)", value="auto", info="Language the input text is in.")
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language (Output)", value="auto", info="Target language/accent to output.")
layout["inference_tts"]["inputs"]["task"] = gr.Dropdown(choices=get_tasks(), label="Task", value="tts", info="")
with gr.Row():
layout["inference_tts"]["inputs"]["split-text-by"] = gr.Dropdown(choices=["sentences", "lines"], label="Text Delimiter", info="How to split the text into utterances.", value="sentences")
layout["inference_tts"]["inputs"]["context-history"] = gr.Slider(value=0, minimum=0, maximum=4, step=1, label="(Rolling) Context History", info="How many prior lines to serve as the context/prefix (0 to disable).")
"""
with gr.Row():
layout["inference_tts"]["inputs"]["no-phonemize"] = gr.Checkbox(label="No Phonemize", info="Use raw text rather than phonemize the text as the input prompt.")
layout["inference_tts"]["inputs"]["play"] = gr.Checkbox(label="Auto Play", info="Auto play on generation (using sounddevice).")
"""
with gr.Tab("Sampler Settings"):
with gr.Row():
layout["inference_tts"]["inputs"]["ar-temperature"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR/NAR-len)", info="Adjusts the probabilities in the AR/NAR-len. (0 to greedy* sample)")
layout["inference_tts"]["inputs"]["nar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Adjusts the probabilities in the NAR. (0 to greedy sample)")
layout["inference_tts"]["inputs"]["modality"] = gr.Dropdown(value="Auto", choices=["Auto", "AR+NAR", "NAR-len"], label="Modality", info="Whether to inference with the AR+NAR or through the NAR-len.")
with gr.Row():
layout["inference_tts"]["inputs"]["cfg-strength"] = gr.Slider(value=1.0, minimum=0.0, maximum=14.0, step=0.5, label="CFG Strength", info="Classifier Free Guidance scale (AR needs 1, NAR-len needs 3).")
layout["inference_tts"]["inputs"]["cfg-rescale"] = gr.Slider(value=0.75, minimum=0.0, maximum=1.0, step=0.05, label="CFG Rescale (Phi)", info="Factor when rescaling for Classifier Free Guidance (0 to disable).")
with gr.Row():
layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P", info="Filter out logits lower than this value.")
layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
layout["inference_tts"]["inputs"]["top-no"] = gr.Slider(value=0, minimum=0, maximum=2, step=0.5, label="Top-nσ", info="Performs top-nσ logits processing.")
with gr.Row():
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=0.0, maximum=5.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
# These settings are pretty much not supported anyways
with gr.Tab("Experimental Settings", visible=cfg.experimental):
with gr.Row():
layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.5, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.")
with gr.Row():
layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.")
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
with gr.Row():
layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
with gr.Row():
layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
with gr.Row():
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
layout["inference_tts"]["buttons"]["inference"].click(
fn=do_inference_tts,
inputs=[ x for x in layout["inference_tts"]["inputs"].values() if x is not None],
outputs=[ x for x in layout["inference_tts"]["outputs"].values() if x is not None]
)
# IC
layout["inference_tts"]["inputs"]["voice-convert"].change(
gradio_transcribe_input,
[
layout["inference_tts"]["inputs"]["voice-convert"],
layout["inference_tts"]["inputs"]["text"],
layout["inference_tts"]["inputs"]["split-text-by"],
],
[
layout["inference_tts"]["inputs"]["text"],
layout["inference_tts"]["inputs"]["split-text-by"],
]
)
with gr.Tab("Speech to Text"):
with gr.Row():
with gr.Column(scale=8):
layout["inference_stt"]["outputs"]["ouput"] = gr.Textbox(lines=1, label="Output Transcription")
with gr.Row():
with gr.Column(scale=1):
layout["inference_stt"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS")
# layout["inference_stt"]["stop"] = gr.Button(value="Stop")
layout["inference_stt"]["buttons"]["inference"] = gr.Button(value="Inference")
with gr.Column(scale=7):
with gr.Tab("Basic Settings"):
with gr.Row():
layout["inference_stt"]["inputs"]["ar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)")
layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en", info="Language of the input audio being transcribed.")
with gr.Tab("Sampler Settings", visible=False):
with gr.Row():
layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
layout["inference_stt"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P")
layout["inference_stt"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
with gr.Row():
layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
with gr.Row():
layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
with gr.Row():
layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
layout["inference_stt"]["buttons"]["inference"].click(
fn=do_inference_stt,
inputs=[ x for x in layout["inference_stt"]["inputs"].values() if x is not None],
outputs=[ x for x in layout["inference_stt"]["outputs"].values() if x is not None]
)
"""
with gr.Tab("Training"):
with gr.Row():
with gr.Column(scale=1):
layout["training"]["outputs"]["console"] = gr.Textbox(lines=8, label="Console Log")
with gr.Row():
with gr.Column(scale=1):
layout["training"]["buttons"]["train"] = gr.Button(value="Train")
layout["training"]["buttons"]["train"].click(
fn=do_training,
outputs=[ x for x in layout["training"]["outputs"].values() if x is not None],
)
"""
if not USING_SPACES:
with gr.Tab("Dataset"):
with gr.Row():
with gr.Column(scale=7):
layout["dataset"]["outputs"]["transcription"] = gr.Textbox(lines=5, label="Sample Metadata")
with gr.Column(scale=1):
layout["dataset"]["inputs"]["speaker"] = gr.Dropdown(choices=get_speakers(), label="Speakers")
layout["dataset"]["outputs"]["audio"] = gr.Audio(label="Output")
layout["dataset"]["buttons"]["sample"] = gr.Button(value="Sample")
layout["dataset"]["buttons"]["sample"].click(
fn=load_sample,
inputs=[ x for x in layout["dataset"]["inputs"].values() if x is not None],
outputs=[ x for x in layout["dataset"]["outputs"].values() if x is not None],
)
if not USING_SPACES:
with gr.Tab("Settings"):
with gr.Row():
with gr.Column(scale=1):
layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model")
with gr.Column(scale=7):
with gr.Row():
layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model", info="Model to load. Can load from a config YAML or the weights itself.")
layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device", info="Device to load the weights onto.")
with gr.Row():
layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision", info="Tensor type to load the model under.")
layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions", info="Attention mechanism to utilize.")
layout["settings"]["buttons"]["load"].click(
fn=load_model,
inputs=[ x for x in layout["settings"]["inputs"].values() if x is not None],
outputs=[ x for x in layout["settings"]["outputs"].values() if x is not None],
)
if os.path.exists("README.md") and args.render_markdown:
md = open("README.md", "r", encoding="utf-8").read()
# remove HF's metadata
if md.startswith("---\n"):
md = "".join(md.split("---")[2:])
gr.Markdown(md)
def start( lock=True ):
setup_logging()
if not USING_SPACES:
ui.queue(max_size=8)
ui.launch(share=args.share, server_name=args.listen_host, server_port=args.listen_port, prevent_thread_lock=not lock)
else:
ui.queue().launch()
if __name__ == "__main__":
start()