vall-e/vall_e/utils/sampler.py

155 lines
4.3 KiB
Python

from dataclasses import dataclass
from typing import Any
import random
import torch
from torch.utils.data import Sampler
from .distributed import global_rank, local_rank, world_size
# Randomly picks an index from an array of indices
class PoolSampler():
def __init__( self, pool = [], keep_all = False ):
self.length = len(pool)
self.global_pool = pool if keep_all else None
self.global_indices = [ i for i in range(self.length) ]
self.reset()
def reset(self):
self.current_pool = [ i for i in self.global_indices ]
def sample(self, pool = None):
if pool is None:
pool = self.global_pool
# check if we need to reset
index = random.choice( self.current_pool )
# remove from pool
self.current_pool.remove(index)
# reset if needed
if len(self.current_pool) == 0:
self.reset()
# map indices to our real values
return pool[index] if pool is not None else index
def __len__(self):
return self.length # len(self.current_pool)
def __iter__(self):
while len(self.current_pool) > 0:
yield self.sample()
def __call__(self, *args, **kwargs):
return self.sample(*args, **kwargs)
def get_state(self):
return { "length": self.length, "global_pool": self.global_pool, "global_indices": self.global_indices, "current_pool": self.current_pool }
def set_state(self, state):
self.length = state["length"]
self.global_pool = state["global_pool"]
self.global_indices = state["global_indices"]
self.current_pool = state["current_pool"]
# "Samples" through a fixed sequence from 0 to length
# Necessary for our "shuffle+sort by duration+interleave" sampling method
# Allows saving and loading state
class OrderedSampler(Sampler):
def __init__( self, length ):
self.position = 0
self.length = length
def __len__(self):
return self.length
def __iter__(self):
if self.position >= self.length:
self.position = 0
while self.position < self.length:
yield self.position
self.position += 1
def get_state(self):
return { "position": self.position, "length": self.length }
def set_state(self, state):
self.position = state["position"]
self.length = state["length"]
# Like the above, but will batch based on token count
class BatchedOrderedSampler(Sampler):
def __init__( self, buckets, max_duration=0, max_batch_size=0 ):
self.position = 0
self.batches = []
assert max_duration != 0 and max_batch_size != 0, "max_duration and max_batch_size cannot both be 0"
current_batch = []
current_size = 0
current_index = 0
for key, bucket in buckets.items():
for path, duration in bucket:
# flush
should_flush = False
if max_duration > 0 and current_size + duration > max_duration:
should_flush = True
elif max_batch_size > 0 and len(current_batch) >= max_batch_size:
should_flush = True
if should_flush and len(current_batch) > 0:
self.batches.append( current_batch )
current_batch = []
current_size = 0
current_batch.append( current_index )
current_index += 1
current_size += duration
def __len__(self):
return len(self.batches)
def __iter__(self):
if self.position >= len(self.batches):
self.position = 0
while self.position < len(self.batches):
yield self.batches[self.position]
self.position += 1
def get_state(self):
return { "position": self.position, "batches": self.batches }
def set_state(self, state):
self.position = state["position"]
self.batches = state["batches"]
# Randomly samples indices from a given sequence from 0 to length
# Allows saving and loading state
class RandomSampler(Sampler):
def __init__( self, length ):
self.position = 0
self.length = length
self.generator = torch.Generator()
self.perm = torch.randperm(self.length, generator=self.generator)
def __len__(self):
return self.length
def __iter__(self):
if self.position >= self.length:
self.position = 0
self.perm = torch.randperm(self.length, generator=self.generator)
while self.position < self.length:
yield self.perm[self.position]
self.position += 1
def get_state(self):
return { "position": self.position, "length": self.length, "perm": self.perm, "generator": self.generator.get_state() }
def set_state(self, state):
self.position = state["position"]
self.length = state["length"]
self.perm = state["perm"]
self.generator.set_state(state["generator"])