diff --git a/do_tts.py b/do_tts.py
index ec21641..611d698 100644
--- a/do_tts.py
+++ b/do_tts.py
@@ -11,14 +11,11 @@ if __name__ == '__main__':
     parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
     parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
                                                  'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
-    parser.add_argument('--num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=256)
-    parser.add_argument('--batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
-    parser.add_argument('--num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
     parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/')
     args = parser.parse_args()
     os.makedirs(args.output_path, exist_ok=True)
 
-    tts = TextToSpeech(autoregressive_batch_size=args.batch_size)
+    tts = TextToSpeech()
 
     voices = get_voices()
     selected_voices = args.voice.split(',')
@@ -28,6 +25,6 @@ if __name__ == '__main__':
         for cond_path in cond_paths:
             c = load_audio(cond_path, 22050)
             conds.append(c)
-        gen = tts.tts(args.text, conds, num_autoregressive_samples=args.num_samples)
+        gen = tts.tts_with_preset(args.text, conds, preset='standard')
         torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), gen.squeeze(0).cpu(), 24000)